ME - Guide

Colofon

Text	Education Support Staff Student assistents Hans van Schuppen and Maarten Vriezen
Word processing	Student assistents Hans van Schuppen and Maarten Vriezen
Styling	Come van der Lelie
Press	Printhouse B.V., Voorschoten
Juli 2002	edition of 700 pieces
Restriction	This study guide has been issued under responsibility of the Education Support Staff. Even though much care is taken with respect to the accuracy and completeness of this study guide, (programme) changes are possible. The most up to date information can be found on the website. http://www.wbmt.tudelft.nl.

Preface

Per September 2002 Delft University of Technology has adopted the international Bachelor-Master structure for her study programmes. At the same time the international MSc study programmes have been integrated within the regular Master studies. This brochure, the ME-Guide, is the first study guide for the Master programme Mechanical Engineering.

The ME-Guide intends to be an information brochure, which answers all questions of students with regard to the Mechanical Engineering Masters study programme and to make the m acquainted with the Faculty of Mechanical Engineering and Marine Technology and Delft University of Technology. The following editors have composed the guide:

Hans van Schuppen, student Marine Technology (MT),

Maarten Vriezen, student Mechanical Engineering (ME),

Nic Jan van Bemmel, manager ME and MT study programmes,

Ewoud van Luik, manager administration for ME and MT study program mes and undersigned.

The guide has been composed carefully, but it may happen that during the study year some changes need to be made. In those cases the most recent information can be found on the website of the faculty: http://www.wbmt.tudelft.nl.

The editors welcome suggestions to improve this guide next year. Suggestions to improve the readability or additional information could be sent to Ewoud van Luik: e.p.vanluik@wbmt.tudelft.nl

The editors hope that the ME-Guide answers all questions with regard to the educational program me and wish that all students enjoy their study with success during the examinations.

Prof. Hans Klein Woud MSc, FIMarEST Education Director ME

Contents

1	MSc-ME	1.1	Goal		12
		1.2	Educat	tional concept and assessment	12
		1.3	Study	program me and gene ral structure	13
		1.4	Admis	sion to the programme	14
			1.4.1	Academic bachelor degree	14
			1.4.2	Bachelor degree of polytechnic highschool	15
			1.4.3	Bachelor degree of Royal Netherlands Naval College	16
		1.5	Variant	ts, specializations and annotations ME	17
			1.5.1	Variant Transport Technology	19
			1.5.2	Variant Control Engineering and Mechatronics	
			1.5.3	Variant Process and Energy Technology	
			1.5.4	Variant Production Technology and Organization	42
			1.5.5	Variant Solid and Fluid Mechanics	49
			1.5.6	Variant Biomedical Engineering	53
			1.5.7	Annotations	57
			1.5.8	Technical University Teacher Course	59
		1.6	Enrolli	ng for courses and tests	60
		1.7	Pass n	ules and criteria for 'honours-degree'	60
		1.8	Profile	of the Mechanical Engineer	61
2	Bachelor / Maste	er syster	n: a brie	f explanation	64
3	Organisation	3.1	Facult	y	66
	-	3.2	Educa	tion support staff	66
		3.3	Educa	tion committee	67
		3.4	Board	of ex aminers	67
		3.5	Studen	nts association	68
		3.6	Studen	nt guidance	69
		3.7	Quality	control	70
		3.8	Informa	ation services	71
		3.9	Rules a	and Regulations	71

4	Facilities	4.1	Lecture rooms	74
		4.2	Student work facilities	75
		4.3	Computer rooms	75
		4.4	Research facilities	
		4.5	Library	
		4.6	Selling point for lecture notes	
		4.7	Mailbox and access to the internet	
		4.8	Available software	80
		4.9	Catering	81
5	TU - Service for	students	S	84
6	Appendices	6.1	Course descriptions	
		6.2	Study and traineeship abroad	113
		6.3	Course and Ex amination Regulations	114
		6.4	Regulations and guidelines for the board of ex aminers	
		6.5	Working conditions and RSI	
		6.6	Lecturers	
		6.7	Map campus	
		6.8	Map faculty	

MSc Mechanical Engineering

1.1 Goal

1

The goal of the educational programme Mechanical Engineering is to educate Mechanical Engineers (MSc), who have the following qualities:

- Broad and deep knowledge of the basic engineering sciences
- Broad basic technical and scientific knowledge of the Mechanical Engineering disciplines: production, transport, process technology, energy conversion, and mechatronics
- Specialized in at least one Mechanical Engineering discipline
- Ability to innovate, model and design systems and equipment
- Ability to contribute to solving multidisciplinary problems by means of a systematic approach, analysis and synthesis and to work both in multidisciplinary teams and independently in an international industrial context
- Ability to communicate effectively with team members and environment
- Ethical conduct, taking responsibility with regard to sustainability, economy and social welfare
- Ability to maintain professional competence trough life-long-lea ming

1.2 Educational Concept and Assessment

Based on the choice of variant and specialization the master program me involves two major parts:

Lecture courses (36-48 c redits)

These courses are divided in three parts:

- Compulsory part per variant (approximately 15 credit points)
- Compulsory part for the chosen specialization
- Elective part (at least 10 credit points)

For each variant and specialization these parts are described in paragraph 1.5.

The general rules for the courses within these parts are as follows:

- At least 4 credit points society oriented courses
- At least 6 credit points mathematics, physics or other fundamental mechanical engineering courses.
- The student can select at least 10 credit points of courses at his own interest, in consultation with the lecturer responsible for the chosen specialization. For each variant an overview of recommended courses may be given.

Most courses are assessed by means of an oral or written ex amination.

Assignments (36-48 c redits)

The assignments take place mainly in the second study year of the MSc-programme. In general the assignments are carried out individually.

The assignments may involve:

- Traineeship in industry or a project task defined in consultation with an
 ex ternal party (industry, research institute, etc.) of 10 c redit points. In case the MSc-thesis is
 performed in cooperation with and at the office of an ex ternal party this part of the program me
 may be combined with the MSc-thesis.
- Literature study
- Laboratory exercise
- MSc-Thesis (26-42 credits)
- The assignments are assessed, based on a written report.

The MSc-Thesis is the final assignment in the MSc-programme. The student prepares a written report a bout his research or design task, performed in the assignment.

After the report has been submitted the final examination will be held. In advance of this so-called 'Ingenieurs-Ex amination' the student presents his work in a colloquium. The examination is held with at least three scientific staff members including the thesis supervisor. The committee may also include ex ternal examiners from industry or a research institute.

In paragraph 1.5 the requirements for assignments are specified for each variant and specialization.

1.3 Study programme and general structure

Mechanical Engineering offers a Master of Science course of two years.

Each course year is divided in two semesters. Every semester consists of two periods. In this study guide, these periods will be referred to as 1A, 1B, 2A and 2B. A period consists of seven weeks of lectures, followed by two or three weeks of tests. The student will get at least one opportunity per course year to do a resit. Resits generally take place in the first period after the regular period for a certain ex amination. Resits for the tests given in period 2B take place in the second half of August.

The credits for one study year are 42 TU Delft credit points. These credit points give an indication of the weight of a certain part of the course. One credit point involves approximately 40 hours of study. These 40 hours include all time spent on the course.

In this study guide the given credits are TU Delft credit points. One TU Delft credit point equals 1.43 ECTS credits. One study year equals 60 ECTS credit points

1.4 Admission to the programme

There are several ways to be admitted to the MSc-programme Mechanical Engineering. Usually the MSc-programme is a continuation of an academic BSc-programme, however the master's phase can also be entered after completing a BSc-programme of a polytechnic high school or the Royal Netherlands Naval College (KIM).

Admission to the MSc-programme is described in the following three subsections.

1.4.1 Academic bachelor degree

Academic BSc-degree Mechanical Engineering (DUT, TUE, UT and IDEA-league)

Every student holding a academic BSc-degree Mechanical Engineering of a Dutch Technical University (Delft, Eindhoven or Twente) or a Technical University which belongs to the IDEA-league (ETH Zürich, Imperial College London or Technische Universität Aachen) can enter the MScprogram me without selection.

A student in the BSc-programme is permitted to do ex aminations of the MSc-programme, if the board of ex aminers approves. When the student has passed it's propaedeutic ex amination and has a study result of the second and third year of at least 72 credit points, including the BSc-thesis, the student is conditionally admitted to the MSc-programme. It is then possible to compose a final list of courses for approval by the board of ex aminers. Final admittance is granted after completing the BSc-program me.

In advance to admittance to the MSc-programme, a BSc-student may obtain approval to take part in examinations of a few MSc-courses. The student has to make a request to the board of examiners. The approval will only be given in case the student can pass for less than 8 credit points in the BSc-program me in the relevant ed ucational period.

Academic BSc-degree Marine Technolgy, Civil Engineering or Aerospace Engineering

Students in this category can enter the MSc-programme without selection. In order to enter the MSc-programme additional courses have to be followed. These are courses of the BSc-program me Mechanical Engineering of in total 10 credit points or less and will be part of the elective courses of the chosen variant.

The additional courses are:

Marine Technology:

wb1211	Dynamics 2-1	1 cp
wb1215	Dynamics 2-2	1 cp
wb2207	Systems and control Engineering 2	2 cp
wb1224	Thermodynamics 2	2 cp
	Total MT:	6 c p

Civil Engineering		
- wb2104	Systems and control Engineering 1	2 cp
-wb1126wb	Thermodynamics 1	2 cp
-wb1211	Dynamics 2-1	1 cp
-wb1215	Dynamics 2-2	1 cp
-wb2207	Systems and control Engineering 2	2 cp
-wb1224	Thermodynamics 2	2 cp
	Total CE:	10 c p
Aerospace Engineering		
- wb2207	Systems and control Engineering 2	2 cp
	Total AE:	2 c p

The student can be conditionally admitted to the MSc-programme, when the student has passed it's propaedeutic ex amination and has a study result of the second and third year of at least 72 credit points of the initial study. It is then possible to compose a final list of courses for approval to the board of ex aminers. Final admittance is granted after completing the additional courses.

Other Academic BSc-degree Technical University

The contents of the BSc-degree and study results of each candidate will be evaluated. The intakecoordinator of the board of examiners is responsible for this selection. The selection procedure can result in:

- admission without additional requirements
- admission with additional requirements of no more than 10 credit points. This case is comparable to that of BSc-degree Marine Technology, Civil Engineering or Aerospace Engineering, as described above. The additional requirements will be part of the elective courses of the chosen variant.
- admission with additional requirements between 10 and 31 credit points. In this case 10 credit
 points are part of the 84 cp of the normal MSc-programme and 21 credit points at most are
 additionally required above the standard MSc-programme.
- no admission. The candidate has to obtain the BSc-degree first. Within the BSc-program me excemption for some courses is possible, depending on earlier education.

Bachelor degree ME of Dutch polytechnic high school (TH) or "Hogere Zeevaartschool"

A candidate can be admitted, if the candidate has completed the TH-Bachelors-programme within 4 years, with good results. The intake-coordinator of the board of examiners is responsible for this selection. An additional number of courses, of the second year of the Mechanical Engineering BSc-program me has to be followed.

Additional courses are:

wb1211	Dynamics 2-1	1 cp
wb1215	Dynamics 2-2	1 cp

Study guide Mechanical Engineering

1.4.2

Linear Algebra for TH-students Analysis for TH-students part 1 Analysis for TH-students part 2 Analysis for TH-students part 3	4 cp 2 cp 2 cp 2cp
Linear Algebra for TH-students Analysis for TH-students part 1 Analysis for TH-students part 2	4 cp 2 cp 2 cp
Linear Algebra for TH-students Analysis for TH-students part 1	4 cp 2 cp
Linear Algebra for TH-students	4 cp
Fluid Mechanics 2	2 cp
Thermodynamics 2	2 cp
Systems and control Engineering 2	2 cp
Finite Element Method 2	1 cp
Elasticity	1 cp
Finite Element Method 1	2 cp
	Finite Element Method 1 Elasticity Finite Element Method 2 Systems and control Engineering 2 Thermodynamics 2 Fluid Mechanics 2

These additional requirements will ensure that the student has at least an entrance level comparable to the second-course year of the Mechanical Engineering BSc-programme. The lecturer of the chosen variant and specialization may require that also a number of third year courses of the BSc-programme, in the field of the specialization is followed. In the MSc-programme the student gets ex emption for the traineeship (10 cp).

In total this results in a study programme of 22 + 84 – 10 = 96 cp.

Bachelor degree of Royal Netherlands Naval College (RNNC)

RNNC 'Technische Dienst' graduates (5 year programme completed)

A selection between candidates will be made. Admission is possible, if the candidate has completed the TH-Bachelors-program me within 5 years, with good results. The intake-coordinator of the board of ex aminers is responsible for this selection. Depending on earlier (RNNC) education a study programme is made. This program me has to be approved by the board of ex aminers.

This programme should comply to the following requirements:

- total minimal amount of 42 cp, including obligatory variant part
- no traineeship

1.4.3

- no society-oriented courses
- MSc-thesis of minimal 26 cp
- Candidates, that completed the fourth RNNC course year, including the practical operational introduction

After being selected by the intake-coordinator, the candidate can be ad mitted. The study program me consists of 70 cp, according to the demands of the chosen variant. It is not necessary to do a traineeship or society oriented courses.

1.5 Variants, specializations and annotations ME

In order to enter the MSc-programme the student should compile a list of courses, which should be approved by the lecture r of the chosen specialization. This list should be filled in at a form, which can be acquired at the desk of the Education support staff and at the website. In paragraph 1.2 the general requirements concerning the study programme are described.

Variants and specializations

There are 6 different variants and 26 specializations Mechanical Engineering:

- 1 Transportation Engineering
 - 1.1 Transport Engineering and Logistics
 - 1.2 Marine Engineering
 - 1.3 Dredging Technology
- 2 Control Engineering and Mechatronics
 - 2.1 Systems and Control Engineering
 - 2.2 Advanced Mechatronics
 - 2.3 Man-Machine-Systems and Control
 - 2.4 Engineering Dynamics
 - 2.5 Mechanics of Materials
 - 2.6 Tribology
- 3 Process and Energy Technology
 - 3.1 Energy Technology
 - 3.2 Process Equipment
 - 3.3 Fluid Mechanics
 - 3.4 Marine Diesel Engines
- 4 Production Technology and Organisation
 - 4.1 Production Technology
 - 4.2 Mechanisation of Production
 - 4.3 Mechanical Engineering Design
 - 4.4 Industrial Organisation
 - 4.5 Maintenance Engineering
- 5 Solid and Fluid Mechanics
 - 5.1 Mechanics of Materials
 - 5.2 Engineering Dynamics
 - 5.3 Optimization of Constructions
 - 5.4 Fluid Mechanics

- 6 Biomedical Engineering
 - 6.1 Medical Instrumentation and Measurements
 - 6.2 Bio Mechatronics
 - 6.3 Medical Safety
 - 6.4 Tissue Biomechanics and Implants

Annotations

There are also 3 annotations, which can be done as a supplement to the variant programme:

- a Technical Marketing
- b Offshore Technology
- c Sustainable Development

1.5.1 Variant Transportation Engineering

Introduction

Free mobility and ex cellent transportation and handling systems for people and goods are comer stones of the accomplished welfare in the industrialized world. Ships transport worldwide more then 90% of all goods, from raw materials to consumer goods. For inland and hinterland transport reliable, cost effective, efficient, fast and flexible transport systems are essential.

Offshore ex ploration of deep-sea reservoirs of oil and gas is essential for the world's supply of energy. In the Netherlands, the marine, d redging and transport sector has a share of more then 10% of the gross national product and many Dutch companies in this sector have leading positions on the world market, in particular the dredging industry.

Today however, limits in transport capacity and accessibility of cities, an experienced reduction of transport safety and reliability, increased ambient pollution and the occupation of scarce areas and energy resources by marine and transport systems put an ever increasing pressure on society. To ensure future accessibility of cities, new transport systems like underground transport systems, play an important role.

To ease the scarcity of ground and to reduce their environmental impact on society, occupants of large areas, like airports, may be moved of fshore, either on large floating structures or on artificial islands. Marine and transport equipment both operate in a vulnerable environment and sometimes handle vulnerable objects. Safety, sustainability and reliability are therefore main issues, also due to increasing public awareness and decreasing public acceptance of the consequences of large accidents at sea and on land.

Energy efficiency, air pollution and acoustic emission are major issues considering the large share in the world's energy consumption and ambient pollution. Advanced, smart, fast, sustainable and safe marine, dredging and transport systems are therefore required to sustain the welfare, to maintain an acceptable mobility and freedom of transportation, and to strengthen the position of the Dutch marine, dredging and transport companies on the world market.

The essence of Transportation Engineering is to develop, design, built and operate marine, dredging and transport systems and their equipment. In the past decades many new concepts and systems have been developed in this sector. Due to strong public pressure for more efficient and safer transport and in order to improve the competitive position of the Netherlands and European marine, dredging and transport sector, it can be expected that this trend will continue at increased speed.

New generation transport and marine systems have to be based on new concepts, using distributed intelligence, combined with the application of smart components. This requires the further development of the knowledge of the dynamics and the physical processes involved in transport, dredging and marine systems, the logistics of the systems and the interaction between the equipment and control systems.

Obligatory courses variant Transportation Engineering:

Cour se code	Cour se name	Lecturehours	Credit points
et3021wb	Electrical drives	0/0/3/0	3
mt216	Introduction combustion engines	0/0/0/4	2
wb3406A	Introduction transportation engineering	2/2/0/0	2
wb3407A	Introduction logistics	0/0/2/2	2
wb3408	Dredging design	0/0/2/2	2.5
wb3419	Characterization & handling bulk solid materials	3	3
		Total	14.5

Specialization Transport Engineering & Logistics

Transport and logistic systems grow in terms of size, capacity, complex ity and ambient pollution. People however ex pect transport systems to be safe, flex ible, efficient, reliable, and labor ex tensive. To meet the public demand future transport systems will have to be designed in a different way. The central problem is to determine (1) how to control and manage future transport systems, (2) how to power their components and (3) to what ex tend they should be automated.

Control systems used in transport systems today are centralized, mostly rigid systems. The applied intelligence is installed at system level and not at equipment or component level. It is therefore impossible to achieve the safety, mobility, flexibility and the increase in capacity essential for tomorrows systems. To achieve this, new tools for design, control, simulation and optimization need to be developed that are based on fund amental innovations and new insights gained into the physics of continuous transport phenomena, as well as the development of agile logistic control systems for discrete (event driven) transport systems using distributed intelligence.

Most components of continuous transport systems are centrally driven. The structure of those components therefore not only carries its weight and ex ternal loads, but transfers the drive force as well. This leads to heavy equipment and a continuous requirement of a large amount of power. Distributed drive systems that supply power there where it is required significant reduce the structural weight and power consumption. To enable the application and full utilization of these drive systems load detection systems and intelligent drive control systems need to be developed. Most components of discontinuous transport systems are locally driven. The flexibility and capacity of discontinuous long distance transport systems can be significantly improved by the application of trains of (hybrid) components. A proper assessment tool needs to be developed to determine the optimum drive configuration (centrally vs locally driven, electrical vs combustion engine) and the corresponding intelligent control system.

Future automation of transport systems is determined by costs, capacity, reliability and safety considerations, as well as by labor extensity and information requirements. Central questions are to what extend needs to be automated, what is the effect on the operator and the user, what kind of information is required to adequately control the system and provide user requested information, how is that information gathered, what sensors are required. The interaction between equipment on one hand and the operator and the environment on the other is crucial for the safe and reliable

operation of a transport system. The challenge is to optimize the operational performance of transport systems accounting for human limitations in knowledge of complex systems and their ability for deductive and inductive reasoning. It is also possible to use knowledge of the active status of components to automate maintenance procedures and to optimize the system's lifecycle and performance. Considering the complex ity of transport systems this is required to assist the operator to ensure safe and sound operation of the transport system and its equipment.

prof.dr.ir. G. Lodewijks	015 27 88793	G.Lodewijks@wbmt.tudelft.nl
prof.ir. J.C. Rijsenbrij,	015 27 86573	J.C.Rijsenbrij@wbmt.tudelft.nl
dr.ir. A.W. Gerstel	015 27 86706	A.W.Gerstel@wbmt.tudelft.nl
ir. T.C.A. Mensch	015 27 86737	T.C.A.Mensch@wbmt.tudelft.nl
mrs. J.W.M. Spoek-Schouten	015 27 82889	J.W.M.Spoek-Schouten@wbmt.tudelft.nl

secretary

Obligatory courses Specialization Transport Engineering & Logistics

Cour se code	Cour se name	Lecturehours	Cr edit points
ct3750	Transport systems and traffic networks		3
ct4330	Harbours and shipping ways		3
wb3406B	Transport engineering and crane design	0/0/2/2	2,5
wb3410	Large scale transport systems	0/0/2/0	1
wb3415	Simulation of transport systems with Adams	0/0/2/0	1
wb3416	Design with Finite Element Method	0/0/0/2	1
wb3417	Discr. syst.: mod., protot., simul. & control	2/2/0/0	2
		Total	13,5

Specialization Marine Engineering

Marine Engineering is the discipline that covers the design, installation and operational use of ship machinery and electrical plants. It covers a wide variety of systems, such as: ship propulsion plants, electric power generation, refrigeration and climate control, auxiliary systems for cooling and lubrication, cargo handling, loading and unloading.

The discipline is also very relevant for the design of land based power plants and process plants. The main issue is "installation technology": integration of different equipment to well functioning, efficient and cost effective systems. It requires extensive knowledge of machinery and electrical equipment (principle of operation and characteristics such as controllability and maintainability) as well as of fluid dynamics, mechanical vibrations and strength, the modynamics, reliability and maintainability. The design of the equipment to be installed is not a main topic of study. The students specialising in marine engineering have a wide choice with regard to elective courses. Only a limited number of courses, according to the variant rules, is mandatory. Next to that the students are expected to follow a number of specialization courses up to 11.5 credit points. 16

credit points can be used for elective courses. The master thesis covers 42 credit points and will frequently be performed in cooperation with industry or an external research institute. The specialization has good contacts with universities abroad, which gives the opportunity to perform a part of the study (courses or the MSc- thesis) abroad.

	prof. ir J. Klein Woud	015 27 81556	J.KleinWoud@WbMT.TUDelft.Nl
	ir ing. H.T. Grimmelius	015 27 82746	H.T.Grimmelius@WbMT.TUDelft.NI
Secretary	mrs D.Heersma	015 27 86868	D.Heersma@WbMT.TUDelft.NI

Obligatory courses Specialization Marine Engineering

Cour se code	Cour se name	Lecture hours	Credit points
mt212	Marine engineering B	0/2/0/0	2
mt213	Marine engineering C	0/0/0/2	1
mt215	Marine engineering A	0/3/0/0	1,5
mt518	Resistance and propulsion 1	0/0/4/0	1,5
mt518p	Tests resistance and propulsion 1	0/0/x /0	0,5
mtp204	Project 2-4 design propulsion plant	0/0/0/x	3
mtp301	Project 3-1A design auxiliary systems	x/0/0/0	2
·		Total	11.5

Specialization Dredging Technology

Machinery for the treatment of soil and/or bulk goods are constituting an interface between Mechanical Engineering and Civil Engineering. Within this framework one must think of dredging machinery, tunnel drilling machines and equipment for the treatment of bulk goods. This field comprises ex cavation, transport and sedimentation processes of soil, rock and bulk goods that are brought about by human intervention and controlled by means of

the appropriate machinery. The purpose in this is to realize or maintain "constructions" and to mine, transfer or treat building materials or ores. Examples of the constructions mentioned above are: ports, channels, land reclamation, cores of dykes and (drilling) tunnels. Ex amples of the treatment of materials are: soil treatment, mixed heap systems and the separation of materials when mining minerals. Ex amples of transference are: the transhipment of bulk materials, conveyor belts in the mining industry and hydraulic transport of solids. An important development in this is the drilling of tunnels in "feeble" ground. The designing of and working with the equipment mentioned above is primarily determined by physical processes, such as loosening up rock, soil or bulk materials, vertical and horizontal transport, positioning in the means of transport, treatment and positioning of the material in a desired geometry. When designing machinery, a large number of restrictions play an important part. They all relate to local circumstances, such as the availability of facilities, the condition of the soil or bulk goods, the availability of resource-rich areas for the purpose of elevation, dumping sites for the removal of materials from digged-in constructions, wind and weather conditions, environmental requirements, available energy and a large number of other technical, administrative and economic restrictions. Furthermore, it is required to possess a profound insight into the availability of highly sophisticated mechanical constructions that often have to operate under heavy and dynamic load conditions due to the aggressive environment. The dredging and sea-mining industry moves to deeper waters. Although operation depths do not exceed 150 m today, it is expected that within 10 years, dredging and sea-mining will reach 500 to 1000 m and incidental the ultra deep waters to fulfil the requirements of the offshore industry. This means the development of new concepts for deep-sea operations, the development of monitoring and control systems for the ex cavation process and a sufficient level of reliability. All based on the knowledge of the physical processes.

	prof.ir. W.J. Vlasblom	015 27 83973	W.J.Vlasblom@wbmt.tudelft.nl
	dr.ir. S.A. Miedema	015 27 88359	S.A.Miedema@wbmt.tudelft.nl
/	mrs. P. Bokop-van der Stap	015 27 88529	P.Bokop-vanderStap@wbmt.tudelft.nl

secretary

Obligatory courses Specialization Dredging Technology

Cour se code	Course name	Lec tur e hour s	Credits
ctme2090	Soil mechanics first part or		2 or
mp3780	Soil mechanics 1		2
wb1427	Advanced Fluid dynamics A	2/2/0/0	3
wb2402	Hydraulic servo systems	2/2/0/0	2
wb3413	Dredging processes 1	2/2/0/0	2.5
wb3414	Dredging processes 2	0/0/2/2	2.5
		Total	12

16

Elective	courses	variant	Trans	portation	Engine	ering

Course code	Course name	Lecture hours	Credits	TL	ME	DE
ae4-496	Maintenancetechnology		2		Х	
ct	Offshore morfology		1			Х
ct	Offshore design and realization		2			Х
ct	Offshore hydromechanics		2			Х
ctbd3980	Realization civil projects		3			Х
ctip3070	Three-dimensional lay-out		2	Х		
ctvk4810	Exploitation and control of transport		3	Х	Х	
ctwa3030	Foundation engineering		2			Х
ctwa3320	Groundwater mechanics and -flow		3			Х
ctwa4300	Introduction coastal waterengineering		3			Х
ctwa5305	Waterbouwkundige kunstwerken B.O.		1			Х
et4045 mech	Electronical Instrumentation I		2.5	Х	Х	
et4046 mech	Sensors		3	Х	Х	
et4098 mech	Robot control systems		1.5	Х	Х	
ide5131	Business marketing for engineers		2	Х	Х	
in2024tu	Introduction databases		3	Х	Х	
in2038p	Exercise introduction databases		1	Х	Х	
in3010tu	Introduction virtual reality		3	Х	Х	
in4005tu	Industrial automation		3	Х	Х	
in4013tu	Expert systems		3		Х	
in4028tu	Business systems engineering		3	Х	Х	
in4050tu	Object oriented programming with Java		4	Х	Х	
mk3431	Welding techniques		2	Х		
mp1700	Ingenieursgeologie		1.5			Х
mp3790	Soil mechanics II		2			Х
tn3713	Advanced thermodynamics		2		Х	
wb1310	Multibody dynamics A	0/0/0/4	2	Х	Х	Х
wb1330	Design in fibre reinforced plastics 0/0/2/0		1	Х		
wb1406	Experimental mechanics	0/0/2/2	2	Х		
wb1412	Non-linear vibrations	0/0/2/2	2	Х	Х	
wb1413	Multbody dynamics B	0/0/2/2	2	Х	Х	
wb1416	Numerical methods for dynamics	0/0/2/2	2	Х		
wb1427	Stromingsleer voortgezette cursus2/2/0/0		3			Х
wb2303	Measurement techniques	0/0/2/2	2	Х	Х	Х
wb2306	Cybernetical ergonomics	0/0/0/4	2	Х	Х	
wb2311	Introduction modelling	4/0/0/0	2		Х	
wb2400	Process control	0/0/2/2	2		Х	
wb2402	Hydraulic servo systems	2/2/0/0	2	Х	Х	
wb2404	Man-machine systems	2/2/0/0	3	Х	Х	
wb2414	Mechatronics	2/2/0/0	2	Х		
wb2420	Control theory	4/0/0/0	4	Х	Х	Х
wb3300	Design methodolgy	0/0/2/0	1.5	Х	Х	Х
wb3303	Mechanisms	0/0/2/2	2	Х		
wb3404A	Vehicle dynamics A	0/0/2/2	2	Х	Х	

Course code	Course name	Lecture hours	Credits	TL	ME	DE
wb3404B	Vehicle dynamics B	0/0/2/2	2	Х	Х	
wb3406B	Transport engineering and crane design	0/0/2/2	2.5		Х	Х
wb3410	Large scale transport systems	0/0/2/0	1	Х		
wb3412	Bulk materials handling syst. and equip.	0/0/2/2	2.5			Х
wb3413	Dredging processes 1	2/2/0/0	2.5		Х	
wb3414	Dredging processes 2	0/0/2/2	2.5		Х	
wb3415	Simulation of transport syst. with ADAMS	0/0/2/0	1		Х	
wb3416	Design with Finite Element Method	0/0/0/2	1		Х	
wb3417	Discrete systems	2/2/0/0	2		Х	
wb3418	Pro Engineer	-/-/-/x	1	Х		
wb4300B	Introduction to pumps and compressors	0/0/2/0	1		Х	Х
wb4303	Energy, society and sustainability	0/4/0/0	2		Х	
wb4401	Deeltjestechnologie-W	2/2/0/0	2			Х
wb4408A	Diesel engines A	2/2/0/0	3		Х	
wb4408B	Diesel engines B	0/0/2/2	3		Х	
wb4410A	Refrigeration A1	0/0/2/2	2		Х	
wb4420	Gas turbines	2/2/0/0	2		Х	
wb4421	Gas turbines, simulation and application	0/0/2/2	2		Х	
wb5201	Power drives	0/0/2/2	2	Х		
wb5302	Design theory: information transducers	0/0/2/0	1	Х		
wb5303	Introduction tribology	4/0/0/0	2	Х	Х	
wb5414	Design of machines and mechanisms	2/2/2/0	3	Х		
wb5415	Maintenanceengineering	2/2/0/0	1.5	Х	Х	Х
wb5420	Design of production systems	4/0/0/0	3	Х		
wi2061	Continuüm mechanics I		3			Х
wi3006	Continuüm mechanics II		3			Х
wi3015tu	Intr. stochastic operations research	0/0/2/2	3	Х		
wi3021tu	Applied statistics B		3	Х	Х	Х
wi4014tu	Numerical analysis C2 (exercise 30 h.)	2/2/0/0	3	Х	Х	Х
wi4019	Non-linear differential equations		2	Х	Х	
wi4051tu	Introduction operations research	2/2/0/0	3	Х	Х	
wi4052	Risk analysis		4		Х	
wm0301tu	Introduction philosophy of technology		2		Х	
wm0304tu	Philosophy of science	0/2/0/0	3	Х	Х	
wm0324lr	Ethics and technology		2		Х	
wm0401tu	History of engineering	0/0/4/0	2	Х		
wm0504tu	Industrial organisation A	4/0/0/0	2	Х		
wm0505tu	Industrial organisation B	0/0/4/0	2	Х		
wm0604tu	Commercial economics	0/0/2/2	2	Х		
wm0605tu	Business economics for engineers		3	Х	Х	
wm0621tu	Innovation management		2	Х	Х	
wm0771	Technisch milieurecht		2		Х	Х
wm0781	Octrooirecht en octrooibeleid		2		Х	Х
wm0801tu	Introduction safety engineering	0/4/0/0	2	Х	Х	
wm0903tu	Technologyand global development		3		Х	
wm1101tu	Upper-intermediate English (refresher)		2		Х	
wm1102tu	Written English for technologists		2		Х	

1.5.2 Variant Control Engineering and Mechatronics

Cour se code	Cour se name	Lec tur e hour s	Cr edit points
wb1406	Experimental mechanics	0/0/2/2	2
wb2305	Digital control systems	0/4/0/0	2
wb2414	Mechatronical Design	2/2/0/0	2
wb2420	Mech. construction principles	4/0/0/0	2
wb2428	Control theory	4/0/0/0	4
wb	Introduction to microsyst.		2
wb	Engineering dynamics		2
		Total	16

Obligatory courses variant Control Engineering and Mechatronics

Recommended elective courses Variant Control Engineering and Mechatronics

Course code	Course name	Lecture hours	Credit points
ae4-524	Head load of airplane constructions	0/4/0/0	2
ae4-537	Space travel constructions	0/2/2/0	2
ide521	Computer visualisation	2/0/0/2	2
ot4652	Floating offshore constructions	0/0/0/3/3	3
wb1430A	Introduction fibre reinforced plastics	2/2/0/0	2
wb1430B	Fibre reinforced plastics continuation	0/0/4/4	4
wb2303	Measurement techniques	0/0/2/2	2
wb3400	Vehicle engineering A	0/0/2/2	2
wb3406A	Transportation engineering A	2/2/0/0	2
wb5400	Tribology of machines	0/2/2/2	3
wb5414	Design of machines and mechanisms	2/2/2/0	3
wm0611tu	Cost information	2/0/0/0	1
wm0621tu	Innovation management	2/2/0/0	2
wm1101tu	Upper-intermediate English	x/x/x/x	2
wi2021tu	Numerical analysis C1	0/0/2/2	3
wi3001	Num. methods partial differential equations	2/2/0/0	4
wi4010	Num. methods large linear algebraic systems	4/0/0/0	4
wi4014tu	Numerical analysis C2	2/2/0/0	3
wi4017	Parallel calculate	0/0/4/0	4
wi4054	Large scale models special subjects	n.n.b.	4
	FORTRAN course	n.n.b.	n.n.b.
	Advanced course FEM software	p.m.	p.m.

Specialization System and Control Engineering

The area of activities of the group is the joint activity of developing theoretical tools for system modelling and control, conducting applications and implementation of control designs. Research is carried out in two subject areas, the system identification and the robust multivariable control design. The applications are focussed on two relevant field for the industry, the advanced process control and the electro-mechanical and servohydraulic moion control systems. The M.Sc students

get a fix basis of modelling techniques, analysis and synthesis for the wide range of applications such as industrial crystalizers, power systems, flight simulators and mechatronic devices. During the thesis work the theoretic knowledge is applied in one of the research projects. The control engineer is not a narrow minded specialist, but is able to join quite a wide field of positions in the society. The young control engineers leaving the group easily find their way to the various industries.

The purpose of Measure ment and Control Engineering is the controlling of systems in the best way possible. For this, a thorough knowledge of systems is needed, for which purpose basic theories are being developed within the section. The theories developed are applied to a wide range of systems, such as complex processes (crystallizers, power stations and control rooms), mechanical systems (flight simulator, robots), but also biological systems (heart, shoulder and arm) and hand prosthesisses and orthesisses. In order to gain sufficient insight into the systems to be controlled, a close cooperation with many other disciplines is indispensable. This field of study aims to provide all students with a thorough knowledge that can be used for the modelling, analysis and synthesis of a wide range of applications. During the completion of one's studies, this basic knowledge is deepened further and made operational in one of the research projects. The graduated control engineer is not narrowed down to one field of specialization, but is employable in a wide-ranging field. Therefore, there is a high demand for engineers with a control engineering background from a wide variety of disciplines in industry, health care and research centres.

Systems and Control Engineering	prof.ir. O.H. Bosgra	phone 015 27 85610
secretary	mrs. Debby van Vondelen	phone 015 27 85 572

Obligatory courses Specialization Systems and Control Engineering

Cour se code	Cour se name	Lecturehours	Credit points
tn3111	System Identification	0/0/4/0	3
wb2422	Modeling 2	0/4/0/0	4
wb2423	Introduction Project SC	x/0/x/0	2
wb2425	Integration Project	x/x/x/x	4
		Total	13

Elective courses Specialization System and Control Engineering

Coursecode	Cour se name	Lecturehours	Credit points
wb2303	Measurement techniques	0/0/2/2	2
wb2400	Process Control	0/0/2/2	2
wb2402	Hydraulic servo systems	2/2/0/0	2
wb2413	Instrumentation	0/0/2/2	2
wb2415	Robust Control	0/0/0/4	4
wb2416	LMI's	4/0/0/0	4
wb2421	Multivariable Control	0/0/4/0	4
wb2424	Mathemethics for SR	2/2/2/2	4
wb2426	Chenistry and chemical plant	0/0/2/2	2
wb2429	Electromechanical systems		3
		Total minimal to se	elect 13

requirements5thyear

-	literature study	10 cp
-	Master's Thesis	32 cp

Specialization Advanced Mechatronics

Advanced Mechatronics richt zich vooral op het ontwikkelen van hoogwaardige servo-systemen, zoals CD- spelers, harddisks, wafersteppers, terwijl de Systeem- en Regeltechniek zich ook richt op het beheersen van complex e industriële processen.

Binnen de opleiding wordt getracht de studenten een grondige kennis mee te geven die bij de diverse toepassingen wordt gebruikt op het gebied van de modelvorming, analyse en ontwerp. In het afstudeerproject worden de verschillende aspecten verder uitgediept en ook operationeel gemaakt.

De afgestudeer de ingenieur is breed inzetbaar en de v raag naar ingenieurs met mechatronische en regeltechnische achtergrond overtreft h et aanbod de laatste jaren ruimschoots.

Advanced Mechatronics	prof.dr.ir.J. van Eijk	phone 015 27 85 396
secretary	mrs. Debby van Vondelen	phone 015 27 85 572

Obligatory courses Specialization Advanced Mechatronics

Cour se code	Cour se name	Lec tur e hour s	Credit points
wb2423	Introduction Project SC	x/0/x/0	2
wb2427	Predictive Modeling	0/0/4/0	2
wb2429	Electromechanical Systems		3
wb2430	Mechatronic Project	x/x/x/x	6
		Total	13

Elective courses Specialization Advanced Mechatronics

Coursecode	Course name	Lecturehours	Credit points
et3021wb	Electrical motion systems	0/0/3/0	3
et4045	Electronic Instrumentation 1		2.5
et4119	Electric power conversion		2.5
tn4010	Electricity/ magnetism		2
in4024	Intro real time programming		4
wb2303	Measurement techniques	0/0/2/2	2
wb2402	Hydraulic servo systems	2/2/0/0	2
wb2421	Multivariable Control	0/0/4/0	4
wb5302	Ontwerpleer 3B	0/0/2/0	1
wb5412	Microtechniek	0/0/2/2	2
		Total minimal to s	elect 13

Requirements 5th year

-	Preliminary study	10 credits
-	Master's Thesis	32 credits

Specialization Man-Machine-Systems and Control

Ν

5

Man-Machine Systems are found in all areas of Mechanical Engineering: the (manu al-)operation of instruments, tools, machines and vehicles, but also the protection and control of complex industrial installations, production lines and medical and transport systems. A human being controlling a technical system carries out certain actions on the basis of information ex change with that system. In the field of Man-Machine Systems this interaction between the human and the technical system is central. Fundamental insights gained from system, measurement and control theory are in this respect essential: identification, perceptibility, responsiveness, open-loop behaviour and regulated behaviour. When a human operates a technical system dynamically, we can consider the human as a regulator: the human finds himself then "in the loop". Dynamic functions with a cognitive (neural) and muscular nature become important elements in such a loop.

Graduation projects typically deal with topics associated with: 1) Support systems for handicapted people, (Walking) Robotic systems (MMS-Direct Control), and 2) Operational aspects of Automation (MMS-Supervisory Control). A pplications are found in the medical and rehabilitation domain as well as in the industrial domain. A special dass of robotic system, namely Haptic Interfaces which offer a dynamic interaction of forces and displacements between the human and e.g. a virtual 3D body, is of key interest because of its use in (trainings) simulators and telemanipulations.

Ian-Machine-Systems and Control	prof.dr.ir. P.A. Wieringa	phone 015 27 85 763
	prof.dr.ir. F.C.T. van der Helm	phone 015 27 85616
ecretary	mrs .M.C.S. Macherhi	phone 015 27 86400

Obligatory courses Specialization Man-Machine-Systems and Control

Cour se code	Cour se name	Direct Control	Supervisory Control	Lecturehours	credit points
wb2301	Syst ident. and param. estimation	0	0	0/0/2/2	5
wb2404	Man-machine mystems	0	0	2/2/0/0	3
wb2407	Human movement control	0	0	2/2/0/0	3
wb2432	Biomechatronics	0	0	0/0/2/2	3
wbp201	Phantom-practical	0	0		2
wb1413	Multibody dynamics B	0	е	0/0/2/2	2
wb2400	Process control	е	0	0/0/2/2	2
wb2408	Fysiological systems	е	0	0/4/0/0	2
wb5412	Micro Engineering	0	е	0/0/2/2	2
	Total	20	20		

Students should have a basic knowledge of System Modeling and Cybernetic Ergonomics. If not these topics become obligatory as well.

Students are encouraged to consider courses provided by the MSc-BioMedical Engineering and MSc-Systems & Control programmes.

Requirements 5th year

Course code	Course name	ср
wbo104-1B	Progress meeting (every last Wednesday of the month)	2
wbo104-2B	Practical assignment	8
wbo104-3B	Literature study	8
wbo104-4B	Literature study colloquium	2
wbo104-5B	Introductory colloquium	6
wbo104-6B	Graduation colloquium	4
wbo104-7B	Final project report	12
	Total	42

Specialization Engineering Dynamics

Within this theme we concentrate on the development of methods for the calculation and optimization of the dynamic behaviour of, especially, nonlinear mechanical systems and the application of the acquired methods in actual practice. The mechanical behaviour of nonlinear dynamic systems is much more complicated than that of linear systems. Therefore, one of the objectives is to characterize the dynamic behaviour by means of modern numerical methods depending on various model parameters. Thus, it can be indicated when periodic solutions are possible and when "chaotic behaviour" may be expected. Another objective is the development of models for the simulation of flexible "multibody systems" and the implementation within special software, through which these can be used for optimization within a

wide range of application areas. A method developed within this section and based on the finite element method, has been laid down in the computer programme system SPACAR95. A pplications can be found in the simulation of, e.g., the dynamic behaviour of manipulators (robots), railway vehicles, cranes, offshore constructions and biomechanics.

Engineering Dynamics	prof.dr.ir.D.J. Rix en	phone 015 27 81 523
secretary	mrs. Corine du Burck	phone 015 27 85 733

Recommended elective courses Common Mechanics

Course code	Course name	Lecture hours	ср
ct5142	Non-linear numerical mechanics	0/0/4/0/0	2
wb1402A	Plates and shells A	2/4/0/0	3
wb1405A	Stability of thinwalled constructions	0/0/4/2	3
wb1408	Strength of materials 4	2/2/0/0	2
wb1409	Elasticitytheory	2/2/0/0	2
wb1410	Continuum mechanics	0/0/4/0	3
wb1432	Mechanics of fibre reinforced plastics	2/2/0/0	3
wb5303	Tribology	4/0/0/0	2
		Total	23

Recommended elective courses Dynamics

Course code	Course name	Lecture hours	ср
ae4-399	Dynamics & control aerospace systems	0/0/4/0	2
ct5145wb	Stochastic vibrations	6/0/0/0	2
wb1310	Multi-body dynamics A	0/0/0/4	2
wb1412	Non-linear vibrations	0/0/2/2	2
wb1413	Multi-body dynamics B	0/0/2/2	2
wb1416	Numerical methods for dynamics	0/0/2/2	2

Requirements

-	Total obligatory credits for courses	46 cp
-	Traineeship	10 ср
-	MSc-thesis	28 ср

Specialization Mechanics of Materials

The continuous improvement of mechanical products and processes requires a flexible design method. For this in the design phase a profound insight in the mechanical properties during and after production is required. Engineering Mechanics offers a variety in analytical, numerical and experimental methods to gain / improve insight in the mechanical properties.

A recent development in flexible designing is the so-called "virtual prototyping". Here, in the design phase the various steps in the production process and the resulting (mechanical) product properties (of the "virtual prototype) are established by means of simulations. Subsequently the design can be adopted / improved. Each adaptation results into an alternative "virtual prototype". The proædure, combined with adequate optimisation, can result in efficient and fast product development, where with reasonable probability the resulting (mechanical) properties (of the "real prototype") will meet the preset qualifications. Therefore, in the past few years virtual (=simu lation-based) prototyping is beginning to draw attention from both industries and the academic world. Virtual prototyping involves a variety of aspects such as mechanical modelling of the material behaviour, numerical simulation, design of appropriate optimisation tools and adequate experimental verification techniques. Education and research in Mechanics of Materials is directed to these aspects, with special focus on experimental characterization and modelling of (process dependent) material behaviour, simulation of production steps and related mechanical properties of products and experimental verification of simulation results.

Some of the most challenging fields of application are found in the (production related) reliability of microelectronics and of (micro-) composite materials. Because of the continuing miniaturization in this area some new concepts in mechanics as well as in experimental methods should be developed and applied. Master theses will often be related to these challenges and will offer opportunities to co-operate with the industrial research partners, such as Philips, Fraunhofer IZM, IMEC, TNO, Thales, Siemens, Kriton, Motorola, ICI, DSM. The 1st year of the educational programme is directed to deepening the knowledge in specialised subjects and can be partly directed towards the special interests of an individual student towards the above fields of application. The 2nd year of the educational programme is directed to the actual thesis work. Here the student will perform

applied research, which normally starts out from a literature study concerning the state of the art of the research subject. Depending on the interests of the individual student, the research subject will be selected such that the major part of activities lies in the field of experimental mechanics and characterisation and modelling of materials properties (with challenges towards micro- and nano-scale phenomena), or in the field of advanced simulation, with applications to the thermo- and/or mechanical behaviour of Microelectronics, Microsystems and/or Composites. A combination of both types of activities is also possible.

Mechanics of Materials	prof.dr.ir. L.J. Ernst	phone 015 27 86 519
secretary	mrs. C. du Burck	phone 015 27 85733
Educational programme		

- Total credit points for courses
 Credit points for preliminary study
 8
- Credit points for Msc. Thesis work 30

Obligatory courses specialization Mechanics of Materials

Course code	Course name	Lecture hours	Ср
mk5751	Rheology of polymeric liquids		2
mk6261TU	Fracture Mechanics		2
wb1408	Mechanics of Pressure Vessels	2/2/0/0	2
wb1409	Theory of Elasticity	2/2/0/0	3
wb1410	Continuum Mechanics	0/0/3/0	3
wb1432	Mechanics of Fibre Reinforced Plastics	2/2/0/0	2
wi4007tu	Fourier and Laplace transforms	0/0/2/2	2
		Total	16

Elective courses specialization Mechanics of Materials

Course code	Course name	Lecture hours	Ср
ct	Computational Modelling of Materials		2
ct5142	Non-linear Computational Mechanics	0/0/4/0	2
ct4150	Plasticiteitsleer		3
wb1310	Multibody Dynamics	0/0/0/2	2
wb1402a	Plates and Shells	2/4/0/0	3
wb1405a	Stability of thin-walled structures	0/0/4/2	3
wb1412	Non linear Vibrations	0/0/2/2	2
wb1413	Multibody Dynamics B	0/0/2/2	2
wb1416	Numerical methods for dynamics	0/0/2/2	2
wb1417	Fluid-Structure interaction	0/0/0/2	1
wb1419	Engineering Dynamics and Mechanisms	2/3/0/0	3
wb1430a	Introduction to Fibre Reinforced Plastics	2/2/0/0	2
wb1430b	Fibre Reinforced Plastics - continued course	0/0/4/4	4
wb1440	Engineering optimisation	2/2/0/0	2
wb2303	Measurement Theory and Praxis	0/0/2/2	2
wb5303	Tribology	4/0/0/0	2
wi4014tu	Numerical Analysis C2	2/2/0/0	3
	Fortran course	to be announced	
	Advanced FEM software course	to be announced	
		Total to be chosen:	14

Specialization Tribology

Tribology is the science aimed to control and predict friction and wear between moving parts. Knowledge of those aspects is fundamental in order to tune lifetime and performance of mechanical systems in relation with design demands. This field of research is related to most aspects of mechanical engineering, physics, science of materials, chemistry and mathematics. New materials, coating systems, surface textures, lubricants and innovative constructions are developed and tested to improve lifetime and performance of mechanical systems. Mechanical engineering is imaginary without moving parts. Considering the necessity to control friction and wear, the meaning of tribology is clear.

Due to progress in industrial engineering there is a growing demand on engineers with interest for tribology. Some examples of these progresses result from the growing need for improved lifetime, performance, quality, less maintenance and environmental aspects like the attention for material and engergy consumption. The research is focussed beyond design aspects of tribology. This implies the development of design tools to predict and to optimize lifetime and performance. Modelling plays an important part. Recent subjects are: thin films in metal forming, transport of ceramic rods on air cushions, lock gates running on thin water films, counter rotating propeller systems, dynamic aspects of grinders, the design of a waterjet rotor.

Tribology	dr.ir.A. van Beek	phone 015 27 86 984
secretary	mrs. C. du Burck	phone 015 27 85 733

Recommended courses Specialization Tribology

Course code	Course name	Lecturer	Lecture hours	ср
et302wb	Electrical drives	Bauer	0/0/3/0	3
mt216	Introduction combustion engines	Klein Woud	0/0/0/4	2
wb1432	Mechanics of fibre reinforced plastics	Marissen	2/2/0/0	3
wb2414	Mechatronics	Teerhuis	2/2/0/0	2
wb2427	Predictive Modeling	Van Eijk	0/0/4/0	2
wb5303	Tribology	van Beek	4/0/0/0	2
wb5400	Tribology in machine design	van Beek/vanOstaye	en 0/2/2/2	3
wb5414	Design of Machines and Mechanisms	Crone, vd Werff	2/2/2/0	3
wi4014tu	Numerieke analyse C2		2/2/0/0	3

1.5.3 Variant Process and Energy Technology

One of the principal industrial contributors to our economy is presently the petrochemical and process industry and the energy production industry. Although these are well-established industrial area there are nevertheless many new developments, which requires new technology. To mention only a few: there is a need to improve efficiency of processes and the quality of products while at the same time the impact on the environment of these processes and their energy consumption should be kept to a minimum. For these reasons new sustainable technology must be developed and then incorporated in new designs, which eventually must find their way in industry.

The master programme 'Process and Energy' gives its student the training to participate in this challenging field. This is done by first giving every Master's degree student training in the fundamental topics of the field, which are: thermodynamics, fluid mechanics and system's theory. Secondly, training is offered in three specialized directions in which the Master's degree student will follow courses in which state of the art techniques and solution methods are discussed and in which both numerical and experimental tools will treated. Finally, a specialized research topic allows the Master's degree student to get involved in the solution of a real problem in the area of Process and Energy.

The "Process and Energy" programme gives an excellent basis for those aiming at a carrier in process and energy industry but it also allows for students who want to specialize further by doing research in academia or industry.

The programme is organized on the basis of a joint curriculum and three specializations. The responsible people for the variant and specializations are:

For the first year there is joint compulsory curriculum of 15 credits for each of the three specializations. The rest of the programme has to be selected in consultation with the responsible lecturer.

Course code	Course name	Lecture hours	ср
st310	Thermodynamics of mixtures	0/0/2/2	2
wb1427	Advanced Fluid Dynamics	2/2/0/0	3
wb2311	Introduction to model formulation	4/0/0/0	2
wb4300A	Equipment for heat and mass transfer	4/0/0/0	2
wb4300B	Introduction to pumps and compressors	0/0/2/0	1
wb4302	Thermodynamics of energy conversion	4/0/0/0	3
wb4303	Energy, society and sustainability	0/4/0/0	2

Obligatory courses variant Process and Energy

Specialization Energy Technology

Sustainability requires the efficient utilization of primary resources i.e. energy and materials with a minimal impact on the environment and at the same time ensuring economic profitability of all activities. The supply of sustainable energy and its efficient use is of major importance for the development of our society and economy.

The objective of the specialization in "Energy Technologies" is to develop a thorough understanding of energy conversion and utilization technologies. The student will learn and apply tools to contribute to the development of highly efficient, environmentally friendly and integrated processes for the production and utilization of heat, power and secondary fuels like hydrogen. The obligatory courses comprise relevant topics like, advanced power generation, combined cycles, decentralized heat and power production including fuel cells, heat pumps and energy utilization in buildings. Within the optional programme and in the assignments the student can focus on fuel conversion, advanced power generation, gas turbines, for special applications, nuclear power engineering, heat pumps and energy utilization in buildings.

It is recommended to develop the first assignment in cooperation with industry inside or outside the Netherlands. The final assignment will be linked to the research activities of the section. Current research activities include invæstigations on systems and components level. The system studies aim at optimizing the complete chain of energy production and utilization, the thermodynamic design of a process and its integration into a larger system and the on-line optimization by on-line diagnostic tools. Ex amples are advanced biomass utilization concepts like biomass gasification in combination with fuel cells/ gas turbines or the hydrogen production. Component level research is related to comb ustion, co-combustion and gasification in fluidized bed and/or pulverized fuel systems and combustion of LCV gases in gas turbines, heat pumps, refrigeration and energy utilization in buildings.

Energy Technology secretary prof.dr.ir. H. Spliethoff mw. drs. M.T.J. Van phone 015 27 86 071 phone 015 27 86 734

Courses Specialization Energy Technology

Course code	Course name	Lecture hours	ср
obligatory cour	ses		
wb4422	Thermal Power Plants	0/0/4/0	3
wb4423	Modelling and Simulation of Energy Conversion Systems	0/0/4/0	2
wb201-1	Process Design and Calculation		4
at least 8 credit	s from the following courses		
wb4405	Fuel conversion	2/2/0/0	2
wb4410A	Refrigeration Fundamentals	2/2/0/0	2
wb4416	Nuclear engineering	0/4/0/0	2
wb4420	Gasturbines	2/2/0/0	2
wb4426	Indcor Climate Control Fundamentals	2/2/0/0	2
10 credits optio	nal courses, recommmended		
ae4-140	Gasdynamics		2
ct5147	Wind Energy Conversion Systems		2
st314	Process Engineering		2
tn3710	Advanced thermodynamics		4
tn3782	Multiphase flow		4
wb1428	Computational Fluids Dynamics	0/0/2/2	2
wb4402	Project engineering	2/2/0/0	4
wb4421	Gasturbines Application and Simulation	0/0/2/2	2
wb4424	Indcor Climate Control Design	0/0/2/2	3
Course code	Course name	Lecture hours	ср
wb4425	Fuel cell systems	no lectures	1
wb4427	Refrigeration Technology and Applications	0/0/2/2	3
Second year			
wb201-2	First assignment		16
wb201-3	MSc-thesis (within research Energy Technology)		26
		Total	84

Specialization Process Equipment

The section of Process Equipment is located at the Laboratory for Process Equipment (API). At API there is a close cooperation with the chair of Separation Processes from TNW. The recommended educational programme includes separation equipment and processes from TNW. The recommended of view of physical processes rather than "black box" rules. In the "G-assignment" assignment a design is made of a real production plant by students from mechanical engineering and from chemical engineering together. In the course Project Engineering and Management all aspects from basic process to business are treated, again with a real ex ample. The research assignments mostly consist of a mix ture of modelling or simulation, laboratory equipment design and construction and ex perimental work and are mostly carried out in the framework of the industrially sponsored projects at API. These include supercritical technologies, industrial crystallization and new hybrid separation technologies.

Process Equipment	prof.dr.ir. G.J. Witkamp	phone 015 27 83 602
secretary	mrs. Annemieke van Dusseldorp	phone 015 27 86 678

Specialization Fluid Mechanics

The specialization of fluid mechanics is directed towards giving training in the fundaments and applications of incompressible fluid flow. In particular the areas to which most attention is given, are turbulence and multi-phase flow and these are in particular the areas, which occur in the process and energy industry. In view of modern technology much emphasis is put on numerical fluid dynamics (CFD) and its use to solve various practical problems. In addition much attention is given to experiments in fluid mechanics field usually in combination with the numerical work, either as validation or as an ex tension of the numerical results. At the end of the programme the student will be trained in all aspects of modern fluid mechanics both by means of courses and by means of specialized research work.

Fluid Mechanics	prof.dr.ir. F.T.M. Nieuwstadt	phone 015 27 81 005
secretary	mrs. Ria van der Brugge	phone 015 27 82 904

Courses for Specializations Process Equipment and Fluid Mechanics

Every student has to follow the 15 credit points of obligatory courses of the variant Process and Energy. For the remaining 27 credit points the student has to make a selection (in consultation with his supervising lecturer) out of the courses mentioned below. These courses are subdivided in three categories with an indication of the number of credit points one should select from each category. The second year is devoted to a traineeship and a the MSC-thesis.

Course code	Course name	Lecture hours	ср
Society oriented	d (>= 4 credits)		
wm0605tu	Business Economics for Engineers		3
wm0621tu	Innovation Management		2
wm1102tu	Written English for Technologists		2
Additional Fund	bamentalsubjects (>= 6 credīts)		
tn3713	Advanced thermodynamics		4
tn3753	Physical Transport Phenomena II		4
tn3782	Multiphase flow		4
wb1428	Computational Fluid Dynamics	0/0/2/2	2
wb4417	Mechanisch-hydraulisch Ontwerpen	2/0/0/0	2
General topics			
ae4-140	Gasdynamics I		2
ae4-141	Gasdynamics II		2
ct5147	Wind energy Conversion Systems		2
et4-149	Solar cells		2
mt212	Marine Engineering 3		2
st314	Proceskunde		2
tn3733	Turbulent reacting flows		4
wb1408	Mechanics of Materials 4	2/2/0/0	2
wb1424ATU	Turbulence A	0/0/2/2	4
wb1424B	Advanced turbulence		2
wb4402	Project engineering	2/2/0/0	4
wb4403	Fysische scheidingsmethoden	0/4/0/0	2
wb4405	Fuelconversion	2/2/0/0	2
wb4408A	Diesel Engines A	0/0/2/2	3
wb4410A	Refrigeration fundamentals	2/2/0/0	2
wb4416	Nuclear Enginæring	0/4/0/0	2
wb4418	Olie en gaswinning buitengaats	0/0/4/4	2
wb4419	Modelvorming voor systemen	0/0/4/0	3
wb4420	Gasturbines	2/2/0/0	2
wb4421	Gasturbines application and simulation	0/0/2/2	2
wb4422	Thermal power plants	0/0/4/0	3
wb4424	Indoor Climate Control Design	0/0/2/2	3
wb4425	Fuel cell systems	no lectures	1
wb4426	Indoor climate control fundamentals	2/2/0/0	2
wb4427	Refrigeration Design & Applications	0/0/2/2	3
wi4006	Special functions		4
wi4011	Numerical fluid Dynamics		4
wi4008	Complex analysis		3
wi4017	Non-linear differential equations		4
	Experimental techniques in Fluid mechanics		

Recommended courses Specializations Process Equipment & Fluid Mechanics

Specialization Marine Diesel Engines

Marine Diesel Engines is a specialization within Process and Energy Technolgy with emphasis on the interaction between the components and subsystems that make up the engine (system approach). Apart from a strong emphasis on the thermodynamic side, the attention is also focussed on the (marine) application of the diesel engine and on the user aspects (maintenance). Diesel Engines as a subject for a Master Degree Programme covers a wide field, not only because of the wide application of the diesel engine but also because all basic dsciplines of mechanical engineering, such as construction and fluid mechanics, thermodynamics, materials, design and engineering, control theory etc., are necessary in an approach to make the diesel engine an environmentally friendly, low cost and low maintenance element in mechanical installations.

Research is inspired by (but not limited to) the marine application and covers:

- Dynamic behaviour and Control in relation to Sea State and manoeuvring in ships
- Sustainability in terms of low fuel consumption and low emissions
- Maintenance and reliability
- Cost and economics

Marine Diesel Engines prof.ir. D. Sta persma secretary mrs. Dineke Heersma phone 015 27 83 051 phone 015 27 86 868

Obligatory courses specialization Marine Diesel Engines

Course code	Course name	Lecture hours	ср
wb4408A	Diesel engines A	2/2/0/0	3
wb4408B	Diesel engines B	0/0/2/2	3
		Total	6

Elective courses specialization Marine Diesel Engines

Course code	Course name	Lecture hours	ср
wb1428	Computional Fluid Dynamics	0/0/2/2	2
wb4405	Fuel conversion	2/2/0/0	2
wb4416	Nuclear Engineering	2/2/0/0	2
wb4420	Gasturbines	0/4/0/0	2
wb4422	Thermal Power Plants	0/0/4/0	3
wb4423	Modeling and Simulation of Energy Conversion Systems	0/0/4/0	2
		At leas t	8

1.5.4 Variant Production Technology and Organisation

Research and education in the domain of production play a significant role in any modern society. In order to stay on the competitive edge the production of capital goods and consumer goods asks for continuous renewal and improvement. Main issues are innovation, cooperation, and integration. The section PTO encompasses the whole scope of activities in production technology and organisation from product marketing, product design, via manufacturing and assembly, to after sales service and recycling.

Some of the industrial driving forces in the field of production are:

- Production for "small and precise". Miniaturisation of products in combination with product variation. Short lead time and realisation of a short Time to Market is a specific challenge.
- Influence of customer driven design on production. Products and means of production are studied from the point of view of competitive product realisation.
- Best practices approach. Managing processes and systems for the best technology and organisation for the whole production chain. A major challenge is quality improvement of technology, organisation and information.

The research themes of PTO focus on advanced production of small parts and products with high accuracy and complex (free form) geometry. These parts are often made of new advanced materials. The integration of production technological innovations with the design of organisations and the product design process itself is the second important area of attention. The research is structured in three programmes:

- Innovative part manufacturing processes. This programme aims at the development of new techniques, or of combinations of current techniques with which new materials can be processed better. High-speed machining, high-pressure waterjet cutting and thix oforming are ex amples of such processes.
- Production technologies for micro-scale systems. This programme aims at the development of techniques for the production of small parts, such as Abrasive Air Jetting, and at the assembly of these parts into products (micro-assembly).
- Organisation design for manufacturing control and product design support. This program me aims at the development of methods and techniques for structuring organisations, especially designing processes within organisations. Design for Production is one of the areas of attention.
Joint curriculum variant PTO

(o = obligatory; e = elective)

Course code	Course name	Lect.h.	CP	PT	MP	ED	IO- ME	IO- LR	ME	cat (4
wb2414	Mechatronical design	2/2/0/0	2	0	0	0	0	-	-	f
wb3417	Discrete systems	2/2/0/0	2	0	0	0	0	0	0	d1)
wb5414	Design of machines and mech.	2/2/2/0	3	0	0	0	0	-	-	d
wb5417	Innovation of manufacturing	0/2/2/0	2	0	0	0	0	е	-	d
wb5420	Design of production systems	4/0/0/0	3	0	0	0	0	0	0	d
wbo402-1	PTO lab exercises	6/6/6/6	8	0	0	0	0	0	0	d
wm0504TU Inc	Justrial organisation A	4/0/0/0	2	0	0	0	o 2)	o2)	o 2)	m 3)
Subtotal oblig	jatory main subjects			22	22	22	22	15	15	

- 1) New (per 2002/2003).
- 2) 6 exercises with case-studies in the afternoon obligatory.
- 3) For a better un derstanding of wm0504TU " Industrial Organisation A" and other courses it is strongly recommended to study the course wm0501TU " Introduction to Business Engineering" in particular the book "Fundamentals of Business Engineering and Management; a Systems Approach to People and Organisations".
- 4) Category of subjects/courses:
 - f = science oriented
 - d = design oriented
 - m = society oriented

Specialization Production Technology (PT)

Production Technology involves the technical knowledge, and management of the entire manufacturing system including processes, machines, and tools. The scope is aimed at the design of the most suitable manufacture and assembly processes for discrete products. Research topics are advanced new manufacturing processes like abrasive air jetting, ultra-high pressure waterjet cutting, precision grinding, this o-forming, high speed machining and micro-assembly.

Production Technology	prof.DrIng.habil.B.Karpuschewski	83204	8D-3-08
Production Technology	ir.J.J.L. Neve	86581	8D-4-07
Secretary	Chr.M.P. de Wilde	83152	8D-3-06
	mrs.drs.M.E.M.Guffens	86578	8D-3-06

Specialization Mechanisation of Production (MP)

Mechanisation of Production is engaged in the design of new, and the analysis and improvement of existing (mass) production machines and processes. Knowledge of the design process and the available technical means like controllers, actuators, sensors is necessary. This knowledge is applied in industry related assignments. Research topics are computer support for the machine design process, and synthesis and analysis of mechanisms.

Mechanisation of Production	prof.ir.H.A. Crone	85207	8D-4-13
Secretary	Chr.M.P. de Wilde	83152	8D-3-06
	mrs.drs.M.E.M.Guffens	86578	8D-3-06

Specialization Mechanical Engineering Design (ED)

Mechanical Engineering Design is dedicated to the methodology of design. The existing methodologies of design are rather abstract theories. For that reason the research is connected to problems occurring in practical situations in industry as much as possible. The research assignments are always related to industrial applications. Example topics of the final assignments are: design calculations and procedures, engineering databases, geometric and physical modelling.

Mechanical Engineering Design	prof.dr.ir.K.v.d.Werff	85729	8D-4-17
Secretary	Chr.M.P. de Wilde	83152	8D-3-06
	mrs.drs.M.E.M.Guffens	86578	8D-3-06

Specialization Industrial Organisation (IO)

Industrial organisation, prepares for designing industrial processes and for positions in line- and staff management in industry and in engineering consultancy. The student learns to analyse a complex industrial problem in a scientific methodological way and to generate an acceptable solution. Great emphasis is put on modelling as an aid to analyse a certain organisational problem, respectively to engineer improved organisations in particular concerning control. The final assignment is directed to a real problem in a company or organisation in Holland or ab road.

Industrial Organisation	prof.ir.H.Bikker	82711	8D-3-23
	mrs.D.J.W.M.Brouwer	83302	8D-3-12
	mrs.S.D.W.M.van der Meer	87428	8D-3-12
Secretary	Chr.M.P. de Wilde	83152	8D-3-06
	mrs.drs.M.E.M.Guffens	86578	8D-3-06

Specialization Maintenance Engineering (ME)

Maintenance engineering and -manage ment includes the control of the failure be haviour of technical systems as well as the organisation and control of maintenance related to the operational or production function in industrial enterprises. Structure, effectiveness and efficiency of maintenance processes like workflow, spare parts stock and purchasing, budgets, cost and personnel have to be controlled. Maintenance technology is directed to realisation of maintenance behaviour, configuration management, diagnostics, failure and root cause analysis, development and adjustment of maintenance programmes, application of condition monitoring techniques, and determination of residual life.

Maintenance Engineering	prof.ir.K.Smit	84978	LR 10th
Secretary	mrs. N.O. Saaneh	85176	LR 10th

Study programme

Besides a common part for all specializations, the educational programmes for the different specializations include obligatory courses and exercises and a number of optional courses (electives) in the first year. The second year is devoted to the application and integration of knowledge and skills in individual assignments. The last assignment is thesis work done in one of the research themes of PTO or in industry. Every student of PTO is expected to give oral presentations about his/her literature or research assignment, and about the results of the MSc-thesis.

Usually 70% of the obligatory courses have to be finished before the student can start with his research assignments. The MSc- thesis starts when all obligatory and elective courses and all other individual assignments have been completed succesfully.

A mentor will be assigned to each student, with whom he can discuss his study-plan and progress.

Summary of specialization curriculum	PT	MP	ED	IO-ME	IO-LR	ME	
Obligatory core courses	14	14	14	14	7	7	
PTO lab exercises (wbo402-1)	8	8	8	8	8	8	4)
Obligatory subjects in Specialization	4	9	7	9	12	17	
Elective subjects	10	11	13	11	9	10	
Industrial training 1) or							
Traineeship 2)	10	10	10	10	10	10	4)
Design/research assignment, literature							
Thesis or combination of both 3)	12	6	6	6	6	6	4)
Master's thesis	26	26	26	26	32	26	4)
Total in credit points	84	84	84	84	84	84	

1) PT, MP and ED: sometimes to be combinated with the MSc- thesis.

2) IO-ME en IO-LR: the traineeship(wbo403-3) is exercised in the 4th dimester.

 A research assignment or literature thesis may also be planned and performed on a topic in one of the cooperating PTO specialisatons. Into the research assignments a number of aspects of different courses are being integrated

 Students entering the master course 2002/2003 are expected to deliver their reports and presentations in the English language.

Course code	Course name	Lect.h.	СР	PT	MP	ED	10-	10-	ME	cat (8
							ME1)	LRr	1)	
ide343	Development operational safety	0/2/2/0	2,5	-	-	-	-	-	0	d
In2041TU	Introduction databases	3/0/0/0	3	е	е	е	-	е	0	d 7)
In2025	Introduction database systems	0/4/0/0	4	е	е	0	е	е	е	f
wm0324LR	Ethics of engineering	0/4/0/0	2	е	е	е	е	0	е	m
Ae4-711	Durable development	4/0/0/0	2	е	е	е	е	0	е	m
wb1310	Multibody dynamics A	0/0/0/4	2	-	0	е	е	-	-	f
wb5201	Power drives	0/0/2/2	2	-	0	0	-	-	е	f
wb3303	Mechanisms	0/0/2/2	2	-	0	е	-	-	-	d
wb5303	Tribology	4/0/0/0	2	е	0	е	е	-	е	f
wb5415	Maintenancetechnology	2/2/0/0	1,5	-	е	е	е	е	0	d
wb5428	Applied systems theory	2/0/0/0	1	-	-	-	0	0	-	f 2)
wb5421	Modelling of manufacturing	0/0/0/2	1	0	-	-	-	-	-	d
wb5422	Industrial assembly	0/0/2/0	1	0	-	-	-	-	-	d
wb5425	Fundamentals of machine tools	0/0/0/2	1	0	-	-	-	-	-	d
wb5426	Capita selecta PTO	0/3/0/0	1	0	0	0	0	е	е	m
wbo403-1	Organisation design & final testc.	2/0/0/0	1	-	-	-	0	0	-	d 3)
wbo403-2	Final preparation & oral exam	2/0/0/0	1	-	-	-	0	0	-	d4)
wi4051TU	Introduction to operation research	2/2/0/0	3	-	е	е	е	е	0	f5)
wi4052	Risc analysis	0/4/0/0	2	-			-	-	0	d
wi4059	Reliability theory	0/4/0/0	2	-	-	-	-	-	0	f
w4070TU	Digital simulation A	4/0/4/0	2,5	-	е	е	-	е	0	d
wm0404tu	Business sociology	2/2/0/0	2	-	-	-	0	0	е	m
wm0104tu	Organization psychology	4/0/0/0	2	-	-	-	0	0	е	m 6)
wm0505tu	Industrial organization B	0/0/4/0	2	-	-	-	0	0	-	m
wm0610tu	Elementary business economics	2/0/0/0	1	е	е	е	е	е	0	m 7)
wm0611tu	Calculation information	0/2/0/0	1	-	-	-	-	-	0	m 7)
Subtotal oblig	atory subjects for specialization			4	9	7	9	12	17	

Obligatory and elective courses per specialization (o = obligatory; e = elective)

- 1) In 2002/2003 the former course wb5413C will be part of wbo403-3 (Practicum in Industry IO).
- Obligatory if not earlier studied in the B.Sc-programme. If this course is part of the specialization subjects the minimum number of elective courses may be reduced with 1 CP.
- wb0403-1 after having completed wb5417, wbo402-1 (PTO lab exercise) and the Practicum in Industry (wbo403-3).
- 4) wbo403-2 after having completed wbo403-1
- 5) for OM: 2 CP.
- 6) To this course wm0104TU belongs a corresponding conference.
- wm0610TU and wm0611TU are both part of wm0605TU "Business Economy for engineers" (2/2/0/0 – 3 CP); to a maximum of 2 CP may be spended on these subjects.
- 8) Category of subjects/courses:
 - f = science oriented
 - d = design oriented
 - m = society oriented

Elective courses per specialization

Course code	Course name	Lect.h.	СР	PT	MP	ED	IO- ME	IO- LR	ME	cat
ct5720	Environmentology and safety	0/0/4/0	3	е	е	е	-	-	-	m
et3021wb	Electrical power drives	0/0/3/0	2,5	-	-	-	-	-	е	f
ide532	Display ergonomics	0/0/0/2	1	-	е	е	е	-	-	d
in1011tu	Software design	0/2/2/0	4	е	е	е	-	-	-	f
in4028tu	Business systems engineering	0/0/0/4	3	-	е	е	е	-	-	d 3)
in4029tu	Information systems engineering	2/2/0/0	3	-	е	е	е	-	-	d 3)
ae2-082	Technologyaircraft building	0/4/0/0	2	е	е	е	-	-	-	d
ae4-485	Manufacturing Engineering	0/0/2/2	2	-	е	е	е	е	е	d
ae4-496	Maintenancetechnology	0/0/2/2	2	-	-	-	-	-	е	d
mk5171	Welding technology	0/2/2/0	2	-	-	-	-	-	е	d
mk6231	Design techniques		2	е	е	е	-	-	-	d
mk2302	Material science 2		8	е	е	е	-	-	-	f
mk6261tu	Breukleer	4/0/0/0	2	-	-	-	-	-	е	f
mk5291	Non-destructive research	0/0/2/2	2	-	-	-	-	-	е	d
mk3421	Corrosion	-/-/-	2	-	-	-	-	-	е	f
mk4401	Fysics en technology thin layers		3	е	е	е	-	-	-	f
mk5631	Damage analysis	-/-/-	2	-	-	-	-	-	е	d
mk5641	Breaking mechanics	-/-/-	2	-	-	-	-	-	е	f
St4881	Durable technology 2		2	е	е	е	-	-	-	d
wb2306	Cybernetical ergonomics	0/0/0/4	2	-	е	е	е	е	-	f
wb3407A	Logistics: introduction	0/0/2/2	2	-	е	е	е	е	е	d
wb4300B	Introd. pumps and compressors	0/0/2/0	1	-	-	-	-	-	е	d
wb4402	Project engineering	2/2/0/0	4	-	-	-	е	-	е	d
wb5305	Managerandinformation	0/2/0/0	1	-	е	е	е	е	-	m
wb5400	Tribology in machine design	0/2/2/2	3	-	-	-	-	-	е	f
wi1003wb	Research meth.& data processing	0/0/4/4	4	е	е	е	-	-	-	f
wi2064	Decision analysis	0/4/0/0	2	-	е	е	е	е	-	d
wm0311tu	Human engineer		2	е	е	е	-	-	-	m
wm0401tu	History of engineering		2	е	е	е	-	-	-	m
wm0509tu	Business aspects research	0/2/2/0	2	-	е	е	е	е	е	m 4)
wm0621tu	Innovation management		2	е	е	е	-	-	е	m 4)
wm0702tu	Principles of law (comprehensive)	0/4/0/0	2	-	-	-	-	е	-	m
wm0781tu	Patent law and - policy		2	е	е	е	е	-	е	m
wm0801tu	Introduction safety engineering	0/4/0/0	2	-	-	-	-	-	е	m
wm0908tu	Engineering and future		2	е	е	е	-	-	-	m
wm1102tu	Written english for technologists	-/-/-	2	е	е	е	е	е	е	-5)
wm1109tu	Scientific writing	0/2/2/0	2	е	е	е	е	е	е	-5)
	and oral presentations	0/0/2/2								
	Minimum cp of elective subjects			10	11	13	11	9	10	

- 1) Each specialization has to deal with a minimum of 4 cp to society oriented courses (m) and 6 cp to fundamental oriented courses (f)
- 2) Students are not supposed to make their choice for elective subjects ex dusively out of this and the previous tables! Elective subjects are meant for broadening the student's view; students are encouraged to consciously choose the elective subjects they want to include in their programme, in agreement with the student's mentor. This table is only meant to help the search process.
- 3) To choose one of the two; in4028 is preferable, but only if enough prior knowledge is obtained.
- 4) To choose one of the two.
- 5) To choose one of the two; wm1109tu is preferable.

TH-programme (see also 1.4.2)

Curriculum subdivision in credit points	PT	MP	ED	IO-ME	ME
Additional courses for TH (see 1.4.2)	22	22	22	22	22
P/D1 – subjects	-	-	-	21)	-
PTO – core obligatory subjects	14	14	14	7 2)	7 2)
PTO – lab exercises (wbo402-1)	8	8	8	8	8
Obligatory subjects in specialization 3)	4	9	7	9	17
Elective subjects 4)	10	11	13	9	10
Traineeship (wbo403-3) 5)	-	-	-	7	-
Design/research assignment, literature thesis or combination of both 6)	12	6	6	6	6
MSc- thesis	26	26	26	26	26
Total in credit points	96	96	96	96	96

1) wm0501TU

2) wb5420, wb3417 en wm0504TU

3) see the regular programme

- 4) see the electives of the regular programmePTO
- 5) based upon 3 CP preparation, 3 CP in industry and 1 CP report
- 6) May also be executed in one of the co-operating PTO-specializations.

1.5.5 Variant Solid and Fluid Mechanics

Design, modeling and control of most practical structures and systems relies on solid or fluid mechanics. In cases of fluid-structure interaction both solid and fluid mechanics are needed. Prompted by rapid developments in computer and information technology, attention has been shifted from analytical approaches towards numerical models and techniques during the last decades. For these reasons, (computational) mechanics and (computational) fluid dynamics are among the keystones of many engineering disciplines, for ex ample aeronautics, civil and mechanical engineering, and bioengineering. Obviously, new theories and models require rigorous ex perimental validation.

The master programme "Solid and Fluid Mechanics" is organized as a two-year study devoted to the fundamentals of contemporary mechanics. This implies that a variety of courses are embedded, addressing the formulation and fundamentals of governing (continuum) theories, numerical solution procedures and discretization techniques, among others.

The "Solid and Fluid Mechanics" programme gives and ex cellent basis for those aiming at a research carrier in industry or academia. However, also for those planning a carrier in advanced engineering the programme yields a solid basis for further specialization.

The programme is organized on the basis of a joint curriculum and four specializations. For each of these specializations the joint curriculum is compulsory and differentiation takes place on the basis of an individual selection of courses. A short description of the four specializations is given below.

Obligatory courses variant Solid and Fluid Mechanics

Course code	Course name	Lecture hours	ср
ct5142	Computational Methods in Nonlinear Mechanics		2
wb1409	Theory of Elasticity	2/2/0/0	3
wb1410	Continuum Mechanics	0/0/4/0	3
wb1419	Engineering dynamics and mechanisms	2/3/0/0	3
wb1427	Advanced Fluid Mechanics A	2/2/0/0	3
wb1428	Computational Fluid Dynamics	0/0/2/2	2
		Total	15

Specialization Mechanics of Materials

The continuous improvement of mechanical products and processes requires a flexible design method. In the past few years virtual (=simulation-based) prototyping is beginning to draw attention from both industries and the academic world. Virtual prototyping involves a variety of aspects such as mechanical modeling of the material behavior, numerical simulation, design of appropriate optimization tools and adequate ex perimental verification techniques. Education and research in Mechanics of Materials is directed to these aspects, with special focus on ex perimental characterization and modelling of (process dependent) material behaviour, simulation of production steps and related mechanical properties of products and ex perimental verification of simulation results.

Some of the most challenging fields of application are found in the (production related) reliability of microelectronics and of (micro-) composite materials. Because of the continuing miniaturization in this area some new concepts in mechanics as well as in experimental methods should be developed and applied. MSc- theses will often be related to these challenges and will offer opportunities to co-operate with the industrial research partners, such as Philips, Fraunhofer IZM, IMEC, TNO, LMS Int., Thales, Siemens, Kriton, Motorolla and DSM.

Mechanics of Materials prof.dr.ir. L.J. Emst Secretary mrs.C.du Burck

Specialization Engineering Dynamics

The dynamical behaviour of structures and mechanisms is at the center of the research and teaching tasks of the Engineering Dynamics group. Our students learn the fundamentals of structural vibrations, multibody dynamics and the basic tools to handle such problems. Structural dynamics and its coupling with fuid or electromagnetic fields are applied to a large variety of domains such as machine design, biomechanics, mechatronics and aerospace. Education and research in Engineering Dynamics involves computer simulations as well as experimental testing and measuring dynamic properties in the lab.

MSc-theses are related either to research topics currently handled in the group or subjects students have a personal interest in. Also many opportunities to carry out the Master thesis in collaboration with industries exist (e.g. Philips, Shell, Corus, ASML, BMW).

Engineering Dynamics Secretary prof.dr.ir. D.J. Rix en mrs.C.du Burck

Specialization Engineering Optimization

Recent developments in computer technology have opened possibilities for automated design and optimization. This requires a solid understanding and knowledge of both (computational) mechanics and optimization. However, nearly always also other disciplines are involved, for example, production, electrical, material sciences, etc. The educational programme on Structural Optimization and Computational Mechanics indudes lectures on the fundamentals of mechanics, numerical modelling and optimization. The present fields of application embedded in the research program me are composite structures, micro-electrical-mechanical-systems (MEMS) and biomedical applications. MSc- theses will typically be related to these fields of application and can be carried out in collaboration with other research institutes or industry.

Engineering Optimization Secretary

prof.dr.ir. A. van Keulen mrs.C.du Burck

Study guide Mechanical Engineering

43

Specialization Fluid Mechanics

The specialization of fluid mechanics is offering training in the fundaments of incompressible fluid flow. The areas, to which most attention is directed, are turbulence and multi-phase flow and these are in particular the areas, which occur in many industrial and environmental applications. In view of modem developments in technology much attention is given to numerical fluid dynamics (CFD) and its uses to various practical problems. Furthermore, the fluid mechanics group carries out extensive research on new developments in the application of numerical tools to fluid mechanics in particular with respect to the simulation of turbulence. Fluid mechanics is a strongly non-linear physical phenomenon and therefore we cannot do without ex periments in this field. Most of the numerical work is, therefore, combined with ex perimental research in which emphasis is put on the use of new measuring techniques. As a result the student will be trained in all aspects of modem fluid mechanics both by means of courses and by means of research work.

Fluid Mechanics	prof.dr.ir. F.T.M. Nieuwstadt
Secretary	mrs.R. v.d. Bruggen

Elective courses variant Solid and Fluid Mechanics

Course code	Course name	Lecture hours	ср
S	ociety oriented (≥ 4 credits)		
wm0605tu	Business Economics for Engineers		3
wm0621tu	Innovation Management		2
wm1101tu	Upper-Intermediate English (refresher)		2
wm1102tu	Written English for Technologists		2
C)ptional courses (≥ 6 credits)		
tn3713	Advanced thermodynamics	0/0/3/0	4
wb1406	Experimental mechanics	0/0/2/2	2
wb1417	Fluid-structure interaction	0/0/0/2	1
wb1440	Engineering Optimization	2/2/0/0	2
wb1441	Optimization II	0/0/2/2	2
wb2414	Mechatronical Design	2/2/0/0	2
wi4014tu	Numerical Analysis C2		3
	Rheology of polymers		2
<i>R</i>	ecommended courses (≥ 10 credits)		
Course code	Course name	Lecture hours	ср
ae4-140	Gasdynamics I	2/2/0/0	2
ae4-141	Gasdynamics II	0/0/2/2	2
Ctme5145	Random vibrations	4/0/0/0	2
ide521	Computer Visualisation	2/0/0/2	2
in006tu	3D Computer Graphics	0/3/0/0	3
IAe4-30	Aero-Elasticity	0/0/2/2	2
mk26	Fracture Mechanics	4/0/0/0	2
tn3713	Advanced thermodynamics	0/0/3/0	4
tn3733	Turbulent reacting flows	2/2/0/0	4

Rece	Recommended courses (≥ 10 credits) continued			
Course code	Course name	Lecture hours	ср	
tn3753	Transport phenome na II	0/0/3/0	4	
tn3782	Multiphase Flow	0/0/2/2	4	
wb1310	Multibody Dynamics A	0/0/0/4	2	
wb1402a	Plates and Shells	2/4/0/0	3	
wb1405a	Buckling Analysis	0/0/4/2	3	
wb1406	Ex perimental Mechanics	0/0/2/2	2	
wb1408	Mechanics of pressure vessels	2/2/0/0	2	
wb1412	Non-linear vibrations	0/0/2/2	2	
wb1413	Multibody Dynamics B	0/0/2/2	2	
wb1416	Computational Engineering Mechanics	0/0/2/2	2	
wb1424atu	Turbulence A	0/0/2/2	4	
wb1424b	Advanced turbulence	0/0/2/2	2	
wb1430a	Introduction to Fibre Reinforced Plastics	2/2/0/0	2	
wb1430b	Fibre Reinforced Plastics - continued course	0/0/4/4	4	
wb1432	Mechanics of Fibre Reinforced Plastics	2/2/0/0	3	
wb1440	Engineering Optimization	2/2/0/0	2	
wb1441	Optimization II		2	
wb2303	Measurement Theory and Prax is	2/2/0/0	2	
wb2414	Mechatronics	2/2/0/0	2	
wb4300a	Heat and Mass Transfer Apparatus	4/0/0/0	2	
wb5303	Tribology	2/2/0/0	2	
wb5414	Design of Machines and Mechanisms	2/2/2/0	3	
wi3001	Num.Meth.for Partial Differential Equations	2/2/0/0	4	
wi3031	Nonlinear Optimization		4	
wi4006	Special functions	2/2/0/0	4	
wi4008	Complex analysis	2/2/2/2	3	
wi4010	Advanced Course on Numerical Linear Algebra	4/0/0/0	4	
wi4011	Numerical fluid Dynamics	2/2/2/2	4	
wi4016	Parallel Algorithms special subjects		4	
wi4017	Non-linear differential equations	2/2/2/2	4	
wi4017	Parallel Computing	0/0/4/0	4	
wi4054	Large-scale Models		4	

1.5.6 Variant Biomedical Engineering

Regarding the social and economical impact there is a great demand for engineers specialised in BioMedical Engineering (BME). Nationwide, there are large investments in medical devices and medical research. In the design of the medical devices and in the medical research, engineers with a biomedical specialization have an important role.

Most engineers receive a mono-disciplinary education, e.g. in electrical, civil or mechanical engineering. In contrast, the largest scientific progress is made in the fields where the traditional disciplines meet or even overlap. Biomedical engineering is a multi-disciplinary specialization with great challenges, in which well-educated engineers can make a large progress. In addition to the technical challenges, BME also appeals to the social responsibility of the engineer. A more direct relation to the improvement of the quality of life is hard to find.

At Delft University of Technology two MSc educations offer a variant in BME, i.e. Electrical Engineering and Mechanical Engineering. In the BME variant there is a close collaboration with clinical partners at Leiden University Medical Center (LUMC), Erasmus University Rotterdam (EUR) and the Amsterdam Medical Center (AMC). The clinical partners participate in the teaching and in the tutoring of the MSc Theses.

The goal of the BME variant is to educate engineers with ex cellent technical skills and knowledge, who have additional medical and biological knowledge, ex perience in medical applications and ex perience in the multi-disciplinary collaboration with physicians and other researchers in the biomedical field. Research-oriented as well as design-oriented MSc students will be educated. Within the BME variant in the MSc Mechanical Engineering programme, a choice can be made between four specializations.

Specialization Medical Instrumentation & Measurements

The development and improvement of surgical instruments and medical devices for the clinician.

Medical Instrument. & Measurements	prof.dr.ir. P.A. Wieringa	phone 015 27 85 763
secretary	mrs. Maria Macherhi	phone 015 27 86 400

Specialization Bio Mechatronics

The development of mechanical and electronical devices for aiding the motion control functions of the patient

Bio Mechatronics	prof.dr.ir. F.C.T. van der Helm	phone 015 27 85616
secretary	mrs. Maria Macherhi	phone 015 27 86 400

Specialization Medical Safety

Analysis of clinical procedures and devices in order to reduce the risk for failures.

Medical Safety	prof.dr.ir. P.A. Wieringa	phone 015 27 85 763
secretary	mrs. Maria Macherhi	phone 015 27 86 400

Specialization Tissue Biomechanics & Implants

Analysis of the mechanical behaviour and interaction between implanted devices and body tissues.

Tissue Biomechanics & Implants	prof.dr.ir. A. van Keulen	phone 015 27 86 515
secretary	mrs. Marianne Stolker	phone 015 27 86 513

The specializations are closely related to the research in the Dept. of Mechanical Engineering, especially in the subdivision Medical Technology and Mechanics, consisting of the research groups Man-Machine Systems & Control and Structural Optimization.

In the 1st year the programme consists of roughly 50% Medical Technology and Biophysics classes and 50% fundamental technical dasses. In the Medical Technology and Biophysics classes the clinical and technical partners will both participate. The physicians will explain the dinical problems and viewpoints, as well as the progress in clinically related research. From the engineering viewpoint, there will be an emphasis on the technical and biophysical aspects, i.e. what is the state of the art in design, modelling and simulation. Here, the relation will be made with the engineering background of the students. In the 2nd year there will be a stay in a biomedical research group or company, and a MSc thesis project in Biomedical Engineering. In order to assure the multidisciplinary nature of the BME education, the MSc thesis project will be tutored by a technical as well as a clinical staff member.

Summary of the Variant Biomedical Engineering

1st course year

Specific Biomedical Engineering courses (total 20 credits)

-Common B ME courses (4 credits) -Health care systems -Introduction Medical Engineering -BME courses for specialization (16 cp; about 9 obligatory and 7 elective cp) -Medical Instruments -Biomechatronics -Medical Safety -Tissue Biomechanics & Implants

Other Mathematician and Engineering courses (total 22 cp; about 10 obligatory and 12 elective cp)

-Specialization knowledge -Research methods -Design courses

2nd course year

-Traineeship (8 cp) -Literatu re study (8 cp) -MSc- Thesis(26 cp)

Course schedule Specializations Biomedical Engineering

Specific BME courses

in the programmes of the specializations Medical Instruments (MI), Biomechatronics (BM), Medical Safety (MS) and Tissue Biomechanics & Implants (TBI) are: (o: obligatory courses; r: recommended elective courses; e: elective courses)

Cour se code	Cour se name	Lecture hours	ср	MI	BM	MS	TBI
et4-126	Medical technology		2	0	0	0	0
et4-127	Theme course biomedical technology		2	е	е	е	е
et4-128	Health care systems		2	0	0	0	0
et4-129	Fysical measurement meth.and image tech.		2	е	е	е	е
et4-130	Bio-electricity		2	е	е	е	е
ide530	Biomechanics		2	е	е	е	е
ide534	Ergonomical aspects data processing systems		1	е	е	е	е
ide5381	Design ergonomics for elderly and handicapped		2	е	е	е	е
ls1061	Cell biology 1		2	е	е	е	r
tn3433	Fysical image techniques		2	е	е	е	r
tn3435	Pattern recognition		2	е	е	е	r
tn399	Radiation dosimetrie (intensive course IRI)		4	е	е	0	е
wb2308	Biomedical engineering design	2/0/0/0	3	0	0	r	r
wb2407	Human movement control	2/2/0/0	3	r	0	е	0
wb2408	Fysiological systems	0/4/0/0	2	0	r	0	0
wb2431	Bone mechanics and implants	0/2/2/0	2	е	r	е	0
wb2432	Biomechatronics	0/0/2/2	3	r	0	е	0
	Total credits obligatory BME	courses	9	13	10	14	

Non-specific BME courses

in the programmes of the specializations Medical Instruments (MI), Biomechatronics (BM), Medical Safety (MS) and Tissue Biomechanics & Implants (TBI) are:

(o: obigatory courses; r: recommen ded elective courses; e: elective courses)

Cour se code	Cour se name	Lecture hours	ср	MI	BM	MS	TBI
ctxxxx	Computational modelling of materials		2	-	-	-	0
wb1409	Theory of elasticity	2/2/0/0	3	е	е	е	0
wb1410	Continuum mechanics	0/0/4/0	3	е	е	е	0
wb1413	Multibody dynamics B	0/0/2/2	2	r	0	r	r
wb1440	Engineering optimization	2/2/0/0	2	е	е	е	0
wb2301	System identific. and parameter estimation	0/0/2/2	5	0	0	0	ek
wb2303	Measurement techniques	0/0/2/2	2	0	е	0	е
wb2309	Introduction specialization MMS	2/0/0/0	0.5	0	0	0	-
wb2404	Man-machine systems	2/2/0/0	3	0	0	0	е

48

Cour se code	Cour se name	Lecturehours	ср	MI	BM	MS	TBI
wb2413	Instrumentation	0/0/2/2	2	е	е	0	r
wb2420	Control theory	4/0/0/0	4	0	0	0	е
wbp202	Haptics system design		3	0	0	0	е
	Total credits obligatory	courses		17.5	17.5	19.5	10
ct5142	Computational meth. in non-linear mechanics		2	-	-	-	r
ide521	Computer visualisation		2	е	е	е	е
in006tu	3D computer graphics		3	е	е	e-	е
mk26	Fracture mechanics		2	-	-	-	r
tn3111wb	System identification B	0/0/2/2	3	е	е	е	е
wb1310	Multibody dynamics A	0/0/0/4	2	е	е	е	е
wb1406	Experimental mechanics	0/0/2/2	2	е	е	е	е
wb1416	Computational engineering mechanics	0/0/2/2	2	е	е	е	е
wb1427	Advanced fluid mechanics A	2/2/0/0	3	-	-	-	е
wb1428	Computational fluid dynamics	0/0/2/2	2	-	-	-	е
wb1430a	Introduction to fibre reinforced plastics	2/2/0/0	2	-	-	-	е
wb1432	Mechanics of fibre reinforced plastics	2/2/0/0	3	-	-	-	е
wb1441	Optimization 2		2	-	-	-	е
wb2306	Cybernetical ergonomics	0/0/0/4	2	е	е	е	е
wb2402	Hydraulic servo systems	2/2/0/0	2	е	е	е	е
wb2414	Mechatronical design	2/2/0/0	2	r	е	е	е
wb2421	Multivariable control systems	0/0/4/0	4	е	е	е	е
wb2422	Modelling 2	0/4/0/0	4	е	r	е	е
wb5303	Tribology	4/0/0/0	2	-	-	-	е
wb5412	Micro techniques	0/0/2/2	2	r	е	е	е
wi4008	Complex analysis		3	-	-	-	е
wi4011	Numerical fluid dynamics		4	-	-	-	е
wi4014tu	Numerical analysis C2		3	-	-	-	r
wi4017	Non-linear differential equations		4	е	е	е	е
wm0605tu	Business economics for engineers		3	е	е	е	е
wm0621tu	Innovation management		2	е	е	е	е
wm1101tu	Upper-Intermediate english (refresher)		2	е	е	е	е
wm1102tu	Written english for technologists		2	е	е	е	е

1.5.7 Annotations

As an addition to the variant programme there are three annotations, to broaden the knowledge on a certain subject. After completing such an annotation, the student gets a supplement to the MScdegree, which declares a more than average knowledge about that subject. These annotations are:

- a Technical Marketing
- b Offshore Technology
- c Sustainable Development

The study programme, including an annotation, has to comply with the requirements of paragraph 1.2 (84 cp).

Annotation Technical Marketing

The Technical Marketing annotation offers students the possibility to get knowledge and skills in a more commercial direction. The study programme is meant for students, who want to prepare themselves for a technical commercial function (sales, marketing), in the area of their variant and specialisation.

The study programme will be determined in consultation between student, lecturer responsible for the chosen variant and specialisation and the responsible lecturer for Technical Marketing (prof. mr. dr. Sicco S. Santema). The marketing component in the study programme consists of at least 10 cp marketing courses and 16 cp of the MSc - thesis should be devoted to marketing aspects. This means that a major part of the elective courses has to be used for technical marketing. The marketing content of the MSc - thesis should be complementary to the chosen variant and specialisation. Normally this part involves a marketing research study, for products, which still have to be developed, or a market introd uction study, for developed products, but not yet introduced into the market. At the end of the MSc - thesis integration between marketing and technology will take place. This will result in a synthesis report.

Both the lecturer of the chosen variant and specialisation and a technical marketing lecturer will guide the student.

The responsible lecturer for Technical Marketing is prof. mr. Dr. Sicco C.Santema (phone 015 27 83076; e-mail S.C.Santema@io.tudelft.nl). The Technical Marketing guidance of students will be co-ordinated by dr. H.M.J.J. Snelders (phone 015 27 83108; e-mail

H.J.M.M.Snelders@io.tudelft.nl).

Obligatory courses annotation Technical Marketing

Course code	Course name	Lecture hours	ср
ID4141	Consumer research	0/0/3/3	4
ID5131	Business marketing for engineers	0/0/2/0	2
IDE511	Integral aspect of business marketing	0/0/0/4	2
	Total		8

Recommended elective courses annotation Technical Marketing (at least 2 cp)

Course code	Course name	Lecture hours	ср
wm0720	Bedrijfsrecht A / ondernemingsrecht	0/0/4/0	2
wm0115	Conflicthantering en onderhandelen	0/3/0/0	1
	Other courses relevant for TM		

Annotation Offshore Technology

The Offshore Technology annotation offers students the possibility to get knowledge and skills with regard to the complete field of offshore engineering. It is an interfaculty study programme, which is offered via the Delft Interfaculty Centre for Offshore Technology (DICOT). The annotation can be obtained in combination with a number of variants and specialisations. The Participant's guide to the interfaculty Offshore Technology MSc curriculum can be obtained from DICOT (W.W. Massie MSc, P.E.; phone 015 27 846 14; e-mail w.w.massie@offshore.tudelft.nl)

The study programme will be determined in consultation between student, lecturer responsible for the chosen variant and specialisation and the responsible lecturer for Offshore Engineering (prof. dr.ir.J. Meek or W.W. Massie). The offshore component in the study programme consists of at least 25 cp offshore courses and the MSc- thesis should be devoted to an offshore technology subject. This means that the elective courses have to be used for offshore engineering; some of the obligatory courses for the chosen variant and specialisation may be left out in consultation with the lecturers. The offshore content of the MSc- thesis should be complementary to the chosen variant and specialisation.

Both the lecturer of the chosen variant and specialisation and an offshore lecturer will guide the student.

Obligatory courses annotation Offshore Technology

Course code	Course name	Lecture hours	ср
ot4600	Survey of offshore technology		5
ot4615	Oceanography and waves		4
ct4130	Probabilistic design		3
ot4620	Offshore hydromechanics		5
	total		17

Elective courses annotation Offshore Technology (at least 8 cp)

Course code	Course name	Lecture hours	ср
ot4620	Offshore soil mecha	anics	2
ot4651	Bottom founded stru	ucture design	4
ot4652	Design of floating s	tructures	3
ot4653	Subsea engineering	g and marine pipelines	3
ot4661	Offshore moorings		3
ot5662	Subsea engineering	g design	3
ot5663	Offshore windfarm of	design	3

Annotation Sustainable Development

Sustainable development is becoming of increasing importance. Questions are: "What does the world look like in 50 years?' or: "What should the world look like in 50 years?' . The curriculum is based on elective courses, a colloquium and the MSc-Thesis. The aim of the colloquium is to develop broad knowledge of all kinds of environmental an technical issues and to place this in perspective.

The curriculum should include:

- colloquium in sustainable development of 2 cp
- 4 courses, each not less than 2 cp; to be chosen from the following clusters:
 - Design, Analysis and Tools (General)
 - Design, Analysis and Tools (Marine Technology)
 - Organisation
 - Policy and society
- MSc-thesis, which shall be devoted also to sustainable development. The coordinator shall
 approve the problem formulation of the thesis and the extent to which sustainable development
 is integrated into the thesis. The coordinator shall further determine whether the theme of
 sustainable development has been sufficiently integrated into the problem formulation, the
 ex ecution of the project and the project report.

Further information on the available courses can be obtained at the website http://www.odo.tudelft.nl and from dr.ir. C.A. Infante Ferrei ra (phone: 015 27 84894, email: c.a.infanteferreira @wbmt.tudelft.nl), who is the coordinating lecturer for Mechanical Engineering, with regard to sustainable development.

1.5.8 Technical University Teacher course (TULO)

Graduated Masters of Science Mechanical Engineering or Maritime Technology have the opportunity to participate in a special course to become a high school teacher in science or mathematics.

There is a standard course, which includes 42 cp. A maximum of 21 of these points can be integrated in the MSc study programme, the other, at least, 21 points have to be earned in a post MSc course.

For more information on admission to the programme and the study programme please contact the office of TULO.

Office of TULO faculty TBM Jaffalaan 5, 2628 BX Delft. Phone: 015 27 82786 / 015 27 83768 E-mail: j.geerlings@tbm.tudelft.nl

1.6 Enrolling for courses and tests

There are different procedures to enroll. Usually it is necessary to enroll for courses and tests.

- courses: students can enroll for specific courses at Blackboard. Most of the communication between lecturer and students goes by blackboard anno uncements. Also ex change of information, assignments and reports often takes place via at Blackboard.
- tests: enrolling for tests is compulsory and can be done at the TAS-site ('Tentamen Aanmeld Systeem' http://www.tas.tudelft.nl). This should be done two weeks before the test takes place, at the latest, otherwise the test will not be accounted for by the lecturer. If a student has enrolled, but decided not to do the test, the student must cancel this, at least one week before the test takes place.
- when first using TAS the student must choose a personal password. This can be done by using the campus card in a card reader. At the faculty there are two card readers: one is located near the Pallas / Parthemus computerroom (4, 1st) and one is located at Education support staff (8B, 3th).

1.7 Pass rules and criteria for 'honours-degree'

Pass rules	To pass a course or assignment, a grade of at least 6 is necessary. It is possible to pass the MSc- ex amination with one grade of 5. The grades are rounded off to the nearest integer.
Examination	On completing the programme, the student should apply for the Master's examination by means of a form, available from the Education Supp ort Staff.
'hon ours- degree'	 The 'honours-degre e' is granted to graduates with the following study results: grade average is at least 7,5 no grades lower than 6 grade for MSc- thesis is at least 8 not more than 2,5 years to complete the MSc-pro gramme This is a summary from part of the "Regulations and guidelines for the board of ex aminers", appendix 6.4 of this studyguide.

1.8 **Profile of the Mechanical Engineer**

Mechanical engineers find their jobs in nearly all branches of industry, in management, design office, research, development or technical department. An increasing number of engineers plays a role in giving advice on and selling high-grade products and capital-intensive equipment. In our technologically highly developed society government bodies constantly need people with a technical-scientific education, i.a. for policymaking. In scientific education too mechanical engineers have their jobs.

The combination of broad technical-scientific BSc-programme and extensive choice of specializations within the MSc-programme, gives the mechanical engineer from Delft a versatile employability. This versatility is illustrated by the variety of professions, among which there are: designer, scientific researcher, organisation expert and automation consultant. Many engineers occupy management positions within a short period: between 25 and 30 % lead a team of 5 to 6 persons in average within about one year.

The labour-market perspectives for Mechanical Engineers with a scientific education from Delft are excellent: 93% of the 1998/1999 graduates had a paid job within 3 months, 72% with a permanent appointment. On average they spent 1 month to get their first job. The average monthly salary for a starting Mechanical Engineer was € 2350 (the average for Mechanical Engineers from all universities: € 2275). 1% of the graduates received further education.

Bachelor/Master system: a brief explanation

In the year 2000 29 Europe an ministers of education have signed the "Bologna Declaration on the European Space for Higher E ducation": the first step towards implementation of the Bachelor/Master system in the Netherlands. The main targets of this system are:

- to stimulate international mobility of students
- development of international study paths
- an increase of the transparency and harmonization of the educational system
- better international recognition of the Dutch educational programmes

The system has been implemented in the Netherlands per september 2002. TUD is the first university in the Netherlands, which implements the system within all its study programmes. The result is 15 BSc- and 23 Msc-programmes.

The traditional programme of 5 study years is divided in a BSc-programme of 3 years and a MSc-program me of 2 years. The BSc-programme ends with a BSc-thesis. Only after completing the MSc-programme the education is complete.

Features of BSc:

2

- selecting and orientating propedeutic ex am
- collective courses in dusters
- BSc-thesis as an integral test of the study programme
- official language is Dutch

Features of MSc:

- several variants and specializations based on research
- better admittance of foreign students
- official language is English, but in the course year 2002/2003 still much courses will be taught in Dutch
- degree with the title 'Ingenieur' or 'Master of Science'

The TU Delft emphasizes that the implementation of this system should in noway interfere with the progress of students, which started their study before 2002. If, however, this occurs it is recommended to consult one of the student advisers.

3 Organisation

3.1 Faculty

The faculty Mechanical Engineering and Marine Technology offers the study programmes Mechanical Engineering (ME) and Marine Technology (MT).

The organisation of the faculty and the structure of the educational and board of examiners of the faculty are described in the faculty regulations.

The dean has the final responsibility for the faculty. He is assisted by the education director. Together with the department heads they form the management team. The dean is supported by the Faculty Staff and is advised by a number of advisory boards.

Dean prof. ir. W. L. Dalmijn phone: 015 27 85401 e-mail: w.l.dalmijn@vbmt.tudelft.nl

3.2 Education support staff

The education support staff is executing the education support of the study Mechanical Engineering. For all issues related to the Mechanical Engineering study the students can get information. The Education Support Staff consists of the following persons:

Joke Ammerlaan	Secretary	j.m.a.ammerlaan@ocp.tudelft.nl	Tel. 015 27 86959
ir. Nic-Jan van Bemmel	Education Manager	n.j.vanbemmel@wbmt.tudelft.nl	Tel. 015 27 88791
Fatma Çelik	Study Administration	f.s.celik-cinar@wbmt.tudelft.nl	Tel. 015 27 86753
Teuni Eden	Study Adviser	t.eden@wbmt.tudelft.nl	Tel.015 278 2176
Lies Gesink	Study Administration	e.g.gesink@wbmt.tudelft.nl	Tel. 015 27 86591
Aad Gutteling	Study Administration	a.gutteling@wbmt.tudelft.nl	Tel. 015 27 86753
Louise Karreman	Study Administration	l.m.karreman@wbmt.tudelft.nl	Tel. 015 27 83457
prof.ir. Hans Klein Woud	Education Director	j.kleinwoud@wbmt.tudelft.nl	Tel. 015 27 81556
Ewoud van Luik	Manager Study Administration and webmaster	e.p.vanluik@wbmt.tudelft.nl	Tel. 015 27 85734
dr. ir. Dick Nijveldt	Education Adviser	d.nijveldt@wbmt.tudelft.nl	Tel. 015 27 85921
Carel Piguillet	Software Support	c.f.f.piguillet@wbmt.tudelft.nl	Tel. 015 27 86820
ir. Jaap v.d. Zanden	Study Adviser	j.vanderzanden@wbmt.tudelft.nl	Tel. 015 27 82996

Education Support Staff Mekelweg 2, Location 8B, 3th floor 2628 CD Delft Phone: 015 27 86959 / 015 27 83457 Fax : 015 27 88340

3.3 Education committee

The education committee advises the dean and the education director on the contents and the structure of de study program me and the examinations. The education committee exists of four lecturers and four students. Also the education director, the education adviser and a study adviser take part in the meetings.

Chairman dr. S. Dijkstra room 8C-0-01 Mekelweg 2 2628 CD Delft phone: 015 27 85606 e-mail: s.dijkstra@wbmt.tudelft.nl

Secretary mrs. L.M. Karreman room 8B-3-05 Mekelweg 2 2628 CD Delft phone: 015 27 83457 e-mail: I.m.karreman @wbmt.tudelft.nl

3.4 Board of examiners

The board of examiners consists of all lecturers, involved in the study programme, as mentioned in paragraph 1.3.

The board of examiners is responsible for the rules and regulations of the examinations and the assessment of the examination results. Requests can be addressed to the board of examiners for participating in a deviating study programme.

Chairman prof. ir. J. Klein Woud room 7-1-121 Mekelweg 2 2628 CD Delft phone: 015 27 81556 e-mail: j.kleinwoud@wbmt.tudelft.nl

Secretary E.P. van Luik room 8B-3-06 Mekelweg 2 2628 CD Delft phone: 015 27 85734 e-mail: e.p.vanluik@wbmt.tudelft.nl

Study guide Mechanical Engineering

57

5 Students association

'Gezelschap Leeghwater' is the students association of students Mechanical Engineering at the TU Delft. It aims to give its members support to their study and to look after the interests of the students Mechanical Engineering.

The first aim, to support to the study, is taken care of by organising excursions, case studies and by taking a seat in the organisation of the "Delftse Bedrijvendagen". Gezelschap Leeghwater also publishes a year book and five times per year magazine 'de Slurf'.

The second aim, to look after the interests of the students, is taken care by organizing "lecture response groups" in order to give feedback to teachers. Gezelschap Leeghwater manages the Lecture Response Computer ("College Respons Computer") in front of lecture room C. Every year one member of the board of Gezelschap Leeghwater is responsible to represent the students in discissions with the faculty and education staff about education. He or she is the person, who canalizes complaints and wishes about the education programme, organization and lecturers. This person can be contacted at ond erwijs@leeghwater.nl

Every weekday between 12.00 hrs and 14.00 hrs Gezelschap Leeghwater sells books at its office. Here you can buy books at cost price, last-years ex aminations and various office articles. On the blackboard last years ex aminations are available for members of Gezelschap Leeghwater to download and print.

Gezelschap Leeghwater Mekelweg 2 2628 CD Delft Phone: 015 278 65 01 Fax: 015 278 14 43 E-mail: info@leeghwater.nl http://www.leeghwater.nl

3.6 Student guidance

For assistance and advise to students the faculty has two study advisers. The study adviser is the person for questions or problems related to the study or about issues, which may influence the ability to study. The study adviser functions as oracle (vraagbaak) and as confidential consultant to students.

The study adviser has no educational responsibilities and can, therefore, devote himself totally to individual students and to help solving their problems which may be an obstacle to their study progress. He also takes seat in a lot of boards and has contact with the lecturers, so that he has up to date information about what is going on in the study Mechanical Engineering. He also has contact with other study advisers and personal advisers at the TU Delft and outside the University; so he knows what is going on elsewhere.

During a talk with a study adviser, often intimate information comes up. The student can be sure that this information will be dealt with confidentially. This kind of information will only be used after consultation with the student, to plead to apply TU- or faculty regulations. A study adviser can decide, as result of certain conditions, to advise e.g. the board of examiners, in favour of a specific student. When necessary the study adviser becomes an intermediary between TU Delft personal advisers: student, deans, psychologists and physicians.

The amount, in which the study adviser pays attention to a student, is up to the student. The study adviser keeps an eye on the study progress of most of the students and calls up one when necessary, but it is strongly recommended to contact the study adviser yourself when a question or problem comes up. Waiting often results in an increase of the problem.

The two study advisers at the faculty are available for all questions. They also have their own specialisms.

mrs. Teuni Eden Specialisms: International contacts, guidance of foreigners and female students Mekelweg 2, 8B 3th floor, room 20 Email: t.eden@wbmt.tudelft.nl Phone: 015 27 82176 Consulting hours on weekdays from 12.30 till 13.30 hrs.

ir. Jaap v.d. Zanden Specialisms: MSc students, polytechnic high school students, quality control, student mentors Mekelweg 2, 8B 3th floor, room 19 Email: j.vanderzanden@wbmt.tudelft.nl Phone: 015 27 82996

Dyslexia

Students having dyslex ia usually have problems with reading and understanding of long texts. This can be an obstacle to 'normal' study progress. Therefore these students are advised to contact one of the study advisers and to set up a remedial plan. Important issues are:

- A planned study delay often helps
- When necessary, longer time for tests is possible
- Studying with a fellow student often results in more study progress
- IBG has ex tra student grants

3.7 Quality Control

The education quality is continuously monitored and evaluated. This is done by the faculty itself and by external organisations. The results of the evaluations are public. A summary of these results can be found on the intermet.

Based on these results the education committee, together with the education director advises the dean.

Internal Quality Control:

- To evaluate the opinion of the students the "SENSOR-cour se-evaluation-system" (CENS) exists. This system gives all students the opportunity to give their opinion on the education anonymously. The study programme and courses are evaluated for each period. The results of evaluations can be found on the website, as well as the pass rates.
- Regular Evaluations with students and lecturers.
- Lodging of and dealing with complaints. These complaints can be lodged at the students association or at the education director.
- The faculty evaluates itself in a, so-called, self-assessment.
- The student association establishes "Lecture Response Groups". These groups publish, together with lecturers, in the 'Meer dan Konsumentengids' their comments on the courses. They also give a direct feedback to lecturers.

External quality control:

- The study is being examined by the VSNU (Association of Universities) every six years. This
 results in index numbers and efficiency performance indicators. For more information see
 www.vsnu.nl.
- Every six years the educational programme is examined and evaluated by the ABET (Accreditation Board for Engineering and Technology, in Baltimore, USA). This takes place on voluntary base.

3.8 Information services

This study guide is the main information source of the faculty and is available to all students at the study administration.

The website, however always contains the most recent information. Announcements, which are of importance for the study, like changes in the schedules, are made timely on the homepage of the faculty and at Black Board.

Schedules about the lectures, assignments and ex aminations are available at the desk of the study administration. At the homepage of the faculty and Black Board the changes in these schedules are given.

Information that is not related directly to the study e.g. information by students association 'Gezelschap Leeghwater', will be published on publication boards. Members of 'Gezelschap Leeghwater' will be keptinformed by e-mail.

3.9 Rules and Regulations

Faculty regulations

- Students have to follow the instructions given by staff members. Staff members are those who support or give lectures and those who are responsible for buildings and the surrounding areas.
- On the first demand of a staff member the student should identify him- or herself by showing the campus card.
- The student should be present in time, before the start of a lecture, assignment, instruction or meeting. The lecturer or assistant may reject students who are late.
- Regular times for lectures to start are:

	star t	end		star t	end
1st lecture	8.45	9.30	5th lecture	13.45	14.30
2nd lecture	9.45	10.30	6th lecture	14.45	15.30
3rd lecture	10.45	11.30	7th lecture	15.45	16.30
4th lecture	11.45	12.30	8th lecture	16.45	17.30

- Bikes should be placed in the bike stands provided

There is an opportunity to store personal belongings in lockers which are provided in the main hall. In the corridor situated next to lecture rooms A till F, bigger lockers can be used to store helmets. At the end of the study year, before the 15th of July, the lockers should be empty and the keys should be returned. Lockers, still in use after the 15th of July, will get a new lock on cost of the student.

- Eating and drinking is only allowed in the canteen, the coffee comer and in the immediate surroundings of a soda, candy, coffee or soup dispensers.
- Writing on, drawing on, sticking things on or scratching in fumiture, walls, doors or windows is prohibited.
- Garbage and paper should be disposed in bins.
- For the use of computers, network connections, printers and plotters there are rules and regulations, which should be taken in consideration.
- Disobeying of rules and regulations can result in a suspension or a denial of certain facilities. Theft or destruction on purpose of properties of TU Delft and also serious misdemeanours (misdragingen) will be mentioned to the proper authorities.

Student Statute (Studentenstatuut)

The Education Specific Part Student Statute (OSDS) applies to the education and the ex ams of the study Mechanical Engineering. The OSDS comes into force on 1 September 2002. The OSDS defines which educational services are given by the faculty and what is demanded from the students. The OSDS intends to offer the students an easy way to accomplish improvements in the educational situation, with help of the education director.

The OSDS consists of:

- This Study Guide
- The Course and Examination Regulations for the study Mechanical Engineering (CER, see appendix 6.3)
- Regulations and guidelines for the board of examiners (appendix 6.4)

Internet facilities

Using the internet facilities at the faculty is bound to some regulations:

It is allowed to:

Send e-mail to persons (or applications) from which can be expected that they will not consider the e-mail as annoying. Also you can receive e-mails which can be temporary stored in the inbox. Read online magazines and to place articles in it.

Use the network information services like WWW-servers and FTP-servers, which are in use at this moment and also which will become available in the future. All use of services is bounded by regulations.

Use the "Intranet DUNeT" on telephones provided through the faculty.

It is not allowed to:

Use available facilities in any other way as they were supposed to be used. Make ex cessive use of the facilities Let a third party use available facilities Do damage or obstruct other users or equipment linked to the world wide web. Become member of a mailing list outside the faculty without permission of the "dutwmail director". This rule only counts for the students.

4 Facilities

The locations of facilities, as mentioned in this chapter, can be found at the faculty map in appendix 6.8. In this study guide is being referred to this map, with a number and a letter, which corresponds to a certain part of the building. The floor is also indicated (BG= ground floor, 1^{st} = first floor, etc.).

4.1 Lecture Rooms

Lecture rooms are used for lectures, (graduation) presentations and instructions. The next table shows all the lecture rooms, their capacity and their location.

Lecture Room	Capacity	Location
А	300	6, BG
В	200	6, BG
С	150	6, BG
D	150	6, BG
E	70	6, BG
F	70	6, BG
J	50	8D, 1 st
K	30	8G, 1 st
L	30	8G, 1 st
Μ	20	8B, 4 th

4.2 **Student work facilities**

Study places

At several locations in the faculty individual study places are available. Some of these study places are equipped with computers. Every student can use such a place. It is not possible to make a reservation. No student has to vacate a study place for a fellow student. Places should be left dean and tidy.

Study places in the library

Besides the study places as mentioned above, there are also places to study in the library. Individual students can use these places. In the library students have to be silent. The same rules apply as for the study places.

4.3 **Computer rooms**

С

Besides computers at the different study places, there are computers available in the computer rooms. Each computer room is provided with a network printer. All computers give access to the internet. The computer rooms are sometimes in use for instructions or assignments. When they are, the computer rooms are not accessible for everybody. A schedule, on the door of each computer room tells when these instructions or assignments take place. If computer rooms are not in use for instructions or assignments, individual students can use them. The next table shows all the computer rooms and their location.

Computer room	Location	
Athena room	4, 1 st	
Parthemus room	4, 1 st	
Pallas room	4, 1 st	
IOP room	8G, BG	

4.4 Research facilities

The faculty has a number of research laboratories. Students may perform a part of their study e.g. the MSc-Thesis or an laboratory exercise in these laboratories. The laboratories are used for research activities of Ph.D.- Students and staff. The different laboratories are:

Laboratory of Dredging Technology and Bulk Transport

 Facilities
 Cutting Tank

 Deep Tank
 Hydraulic Circuit

 Contact
 Laborato riummanage r mr. A. den Hollander

 Phone:
 015 27 86530

 Location:
 3B, BG

Mechanics of Materials Laboratory

Facilities	Zwick 1474 en 1484 trekbanken			
	Metravib Dynamic Mechanical			
	Analyzer; DSC 2920 (thermische analyse)			
	Data acquisitie systemen (300 Hz en 100 kHz)			
	Isel XYZ tafel			
	online dichtheidsmeting			
	video+foto apparatu ur			
	microscopen			
	ovens			
	autoclaaf			
	benodigdheden voor composietfabricage			
	smelt impregnatie opstelling			
	program meerb are wikkelbank			
Contact	Laborato riummanage r mr. R. v.d. Boogaa rd Phone: 015 27 89394 / 89424			
	Location: 5, BG, room 07			

Tribolab

Facilities	diverse tribologische meetopstellingen		
Contact	Laborato riummanage r mr. B. Hoevenaar		
	Phone: 015 27 8680 5		
	Location: 5, BG, room 16		

Delft Bio-robotics Laboratory

 Facilities
 Diverse typen bi-pedale robots voor de bestudering van lopen:

 - Museon Walker: passief-dynamische ballistische loper

BAPS: Pneumatisch bekrachtigde 3-D loper met 'vestibulary' feedback control, zonder knieen
 BOB: Pneumatisch bekrachtigde 3-D loper met reflex ieve feedback, met knieen
 MIKE: Pneumatisch bekrachtigde 2-D loper met reflex ieve feedback, met knieen
 Haptische feedback interfaces
 Contact
 Laborato riummanage r: ir. M. Wisse
 Phone: 015 27 8658 5
 Location: 5, 1st, room 03-L

Engineering Dynamics Laboratory

A data aquisition system: PC and siglab 2042 aquisition box with 4 inputs, 2 outputs with a maximim measuring frequency of 20 KHz.
Accelerometers (charge and ICPs) for measuring signals from 0.002 to 2000 g, in the range of 2 to 10 KHz; 4 PCB 338M12, 1 PCB 353B33, 2 BK 4369
Impulse force hammer with ICP force transducer: PCB 086C03
Impedance head for acceleration and force measurement: PCB 288M25
ICP supply source and amplifier (4 channels), PCB 442B104
3 electrodynamical shakers
Software: Matlab, Siglab, Star modal analysis, Ansys
A droptest machine
A Dynamical Mechanical Analyzer (Metravib) for measuring viscoelastic properties of soft sample materials (belonging to the engineering mechanics group)
Laborato riummanage r: ing R. v.d. Boogaa rd
Phone laboratory: 015 27 89394
Phone manage r. 015 27 86 739
Location: 5, BG, room 07

Laboratory for process equipment

Facilities	Pilot scale research equipment and utilities Analytical equipment	
Contact	Computational Tools Laborato riummanage r. mr. J. v. Os Phone: 015 27 86921 Location: API building, Leeghwaterstraat 44	are a
AH laboratory		
Contact	Laborato riummanage r. mr. B v.d. Velden Phone: 015 27 82892 Location: Leeghwaterstraat 21	
EV/KK laboratory		
Contact	Laborato riummanage r: mr. M. de Groot Phone: 015 27 81821 Location: Leeghwaterstraat 37b	

66

4.5 Library

Central library	
	The library of the TU Delft consists of a main building and smaller libraries in each faculty. The main building has a large collection of books, reference books and magazines. The main part of the collection can be lent from the library, a smaller part is only available within the library. The main part of the collection has to be requested and will be available at the desk within half an hour after requesting. The other part, like study books and lecture notes, is available in the bookcases in the back of the building. The main building has more than 1000 study places (at the ground floor, on the different floors of 'the cone' and in a couple of group rooms), a computer room and coffee and candy dispensers. To lend a book, a student should posses a library card. This pass can be acquired at the desk in the main building or at the library of the stude nt's faculty.
Opening hours	Monday to Thursday 9:00 - 0:00 Friday 9:00 - 18:00 Saturday and Sunday 10:00 - 18:00
Book desk	Monday to Thursday 9:00 - 18:45 Friday 9:00 - 16:45 Saturday 10:00 - 12:45 Books can be borrowed for a period of 28 days. This term can be extended as long as no other
	person makes a reservation for the book. The central library is behind the auditorium (aula) at the Prometheusplein, see appendix 6.7.
Faculty Library	The faculty library is a part of the TU Delft library. It has a collection, specifically for Mechanical Engineering and Marine Technology. This doesn't mean that all books on these subjects can be found here. A part of the books on Mechanical Engineering and Marine Technology can be found in the central library. In the faculty library the lecture-notes and books, used in the study, are available. These books and lecture-notes are not lent out in general. The faculty library also offers places to study. Print and scan equipment is available and there are several recent technical magazines. The library is located at the ground floor in section 8D.
Opening hours	Monday to Friday 9:00 - 17:00
Request	Searching and requesting books is possible by the online catalogue at http://www.library.tudelft.nl. This catalogue includes all collections of all libraries of the TU Delft. Besides the catalogue, requesting of books is possible at the desk of the central library and the faculty library.

4.6 Selling point for lecture notes

Most lecture notes, which are used for lectures at the faculty, are for sale at the selling point for lecture notes. Opening hours: Monday to Friday 12:00 - 15:00 Phone: 015 27 86766 The location is 10, 1st.

4.7 Mailbox and access to the internet

E-mail account Each student has the possibility to communicate on the Internet. Therefore each student gets an email account. This e-mail account is connected to the faculty server. It is also possible to use this account at home. Students also get an account on the NT-computers in the faculty. At these computers the student is able to access the Internet, print and use other network facilities.

Printing Printing is paid for by a print account. Each student gets a welcome account of €11.50 to start with. At the reception desk the account can be upgraded, from 8:30 till 16:30. It is possible to check the print account at all time, by pointing with the mouse on the 'dollar sign'-symbol in the taskbar at any computer at the faculty.

The services mentioned above are taken care of by:

Service information and automation (Dienst Informatisering en Automatisering) (I&A): Managing of computers, servers and the network Phone: 015 27 8200 1 E-mail: helpdesk@wbmt.tudelft.nl

ir.J. de Wilde: Manager e-mail accounts Phone: 015 27 83757 E-mail: j.dewilde@wbmt.tudelft.nl Room: 7 – 1 – 120.

Service Technical Support (Dienst Technische Ondersteuning) (DTO): Supporting when problems with accounts occur Phone: 015 27 82000 E-mail: info@dto.tudelft.nl

4.8 Available software

Software on the working places

The student is able to use a large variety of software provided on the computers at the faculty. The table below shows all available software in the computer rooms and the project tables

	PC Rooms	Project tables		PC Rooms	Project tables
Data Analysis & Simulation Software			Practical Software		
Adams 10.1	х		Autocad 14	х	
Ansys 5.6	х		Autocad Lite 2002	х	х
GSP 9.101	х		BFP FlowSelect		х
Maple 7	х	х	Blok Coëfficiënt		
Matlab 6.1	х	х	Brooks		х
Pro Engineer 2000 i2	х		Card	х	
Grafic Software			Carene		
Coreldraw 9	х	х	CMS	х	х
Internet Software			Costcomp		х
Eudora 5.01	х	х	DelftShip		
Internet Explorer 6.0	х	х	Eagle 11.6		
WS_FTP LE	х	х	E Balans		
Program Languages			Evaluatie Design		
Borland Pascal 7.0	х		Freeboard		
Microsoft Visual Basic 6.0	х	х	Holtrop & Mennen	х	х
Tools			Massa Calculation		
Acrobat Reader 5.0	х	х	Mathcad 5.0	х	х
Flash	х	х	Microsoft Project		х
Mathtype 4	х	х	Pias		
Powerarchiver 6.1	х	х	REBISIite		х
Qres	х	х	SKF	х	х
Realplayer 8.0	х	х	Wtadsoc		х
Shockwave	х	х	SKA		
TAS	х	х			
TNT Lite	х	х	Microsoft Frontpage 2000	х	х
Wbalance	х	х	Microsoft Office 2000	х	х
Workpace	х	х	Sophos Antivirus	х	х

4.9 Catering

The faculty offers a variety of catering facilities.

Canteen The faculty canteen serves a comprehensive lunch. The canteen can be found at location 10, BG.

Coffee corner The coffee comer is specialised in a quick snack. The coffee comer is situated in the main hall (8F). Chairs and couches are available. Opposite of the coffee comer there are dispensers for serve coffee, candy bars, sodas and soup. Paying at these dispensers is only possible by using a chipknip.

- **Faculty room** The faculty room is a place for giving symposia, meetings or graduation drinks ("afstudeerborrels"). A reservation can be made at the reception desk (6).
- LagerhuyschThe Lagerhuysch is situated in the cellar beneath section 8B. There is an access on the square in
front of the faculty. The Lagerhuysch offers the possibility for giving graduation drinks
(afstudeerborrels), but also for organising symposia and meetings. The students associations
Gezelschap Leeghwater and William Froude regularly organise a reception.
On the site http://www.lagerhuysch.tudelft.nl a route description and a reservation form for the
Lagerhuysch can be found.
 - Auditorium Within the TU Delft auditorium a variety of catering facilities is available. Lunch time is from 11.30 till 13.30, diner time from 16.30 till 19.30. See appendix 6.8 for the location of the auditorium.

TU - Services for students

The TU Delft provides several service centres for students:

- Student Service Centre (SSC)
- Sports Centre
- Cultural Centre TU Delft 'Mekelweg 10'
- Library TU Delft

For all other services: refer to the TU Delft website, http://www.tudelft.nl.

Student Service Centre

The Student Service Centre consists of several departments, which provide a diversity of services to students, staff members and faculties.

Some examples of these services are provision of information concerning:

- Studying abroad
- All possible forms of education at the TU Delft
- Study support and advise
- Housing
- Financial support and sponsoring for students and student associations
- Student Service Centre Julianalaan 134 2628 BL Delft Postbus 5 2600 AA Delft Phone: 015 27 86311 Fax: 015 27 86498 http://www.ssc.tudelft.nl

Sports Centre

The Sports Centre provides all kinds of sports facilities:

- Indoors, this means accommodation in different halls and gyms, in which almost any kind of sport can be done.

- Courses and trainings organized by professional instructors.

- Outdoors there are 12 tennis courts and (natural) grass fields for playing soccer, hockey, cricket, rugby, baseball and softball. Most of these fields are illuminated during evenings. Also it is possible to use the facilities on an individual basis.

Sports Centre Mekelweg 8 2628 CD Delft Phone: 015 27 82443 Fax: 015 27 87087 http://www.sc.tudelft.nl

Study guide Mechanical Engineering

71

5
Cultural Centre TU Delft 'Mekelweg 10'

Anyone who likes to express oneself in an artistic manner can do this is at the Cultural Centre. There are numerous possibilities, differing between darkrooms to rehearsal and Dee Jay-studio.

The facilities are:

- Design studios
- Several studios for midi and Deejay's
- Darkroom for photography
- Video editing room
- Rehearsal room for musicians

Cultural Centre TU Delft 'Mekelweg 10' Mekelweg 10 2628 CM Delft Phone: 015 27 83988 Fax: 015 27 83946 http://www.cc.tudelft.nl

ICT Infrastructure

Infrastructure services, concerning telephony and ICT facilities are provided by DTO (Technical Support Service). Services concerning students, as described at http://www.dto.tudelft.nl are:

Internet facilities for student accommodation

A number of internet acces facilities for student accommation are offered by the TU Delft.

OLI

OLI is a foundation that supports students, by offering internet facilities, e.g. to exploit websites. This is possible for all kind of student organisations, like student associations, study associations, student's houses, etc.

http://www.oli.tudelft.nl

6.1 Course descriptions

Lecturer Mulder, K.F. Course material Reader.Lucht - & Ruimtevaart in Duurzame Ontwikkeling, (in Dutch). Available at Aerospace Engineering. English course material is available on request. Non-dutch speaking persons can ask for a personal approach of this course. Description This course covers the background of Sustainable Development in general engineering and the specific applications in aerospace engineering. The lectures give information about global problems like climate change, technology dynamics (e.g. How does technology develop? When will there be a new paradigm in aviation?), social dynamics (e.g. what drives man? Can behaviour be change d? Why is Schiphol A rpot argued and not the Travel Agency?), economics equilling sustainability (e.g. Short Term versus Long Term profits), the justice system and sustainability (e.g. What is the use of International treaties and protocols concerning for instance climate or aviation?) and Worldwide Development of Countries (e.g. Can there be worldwide Sustainable Development without the developments of third world countries to the level of the Western World?). Education Credits TU Education Credits TU	ae4-711	Sustainable development							
Course material Reader:Lucht - & Ruimtevaart in Duurzame Ontwikkeling, (in Dutch). Available at Aerospace English course material is available on request. Non-dutch speaking persons can ask for a personal approach of this course. Description This course covers the background of Sustainable Development in general engineering and the specific applications in aerospace engineering. The lectures give information about global problems like climate change, technology dynamics (e.g. How does technology develop? When will there be a new paradigm in aviation?), social dynamics (e.g. what drives man? Can behaviour be changed? Why is Schiphol A rport argued and not the Travel Agency?), economics equilling sustainability (e.g. Short Term versus Long Term profits), the justice system and sustainability (e.g. What is the use of International treaties and protocols concerning for instance climate or aviation?) and Worldwide Development of Countries (e.g. Can the re be worldwide Sustainable Development without the developments of third world countries to the level of the Westem World?). Education Credits TU	Lecturer	Mulder, K.F.							
Engineering. English course material is available on request. Non-d utch speaking persons can ask for a personal approach of this course. Description This course covers the background of Sustainable Development in general engineering and the specific applications in aerospace engineering. The lectures give information about global problems like climate change, technology dynamics (e.g. How does technology develop? When will there be a new paradigm in aviation?), social dynamics (e.g. what drives man? Can behaviour be changed? Why is Schiphol A rport argued and not the Travel Agency?), economics equilling sustainability (e.g. Short Term versus Long Term profits), the justice system and sustainability (e.g. What is the use of International treaties and protocols concerning for instance climate or aviation?) and Worldwide Development of Countries (e.g. Can there be worldwide Sustainable Development without the developments of third world countries to the level of the Western World?). Education Credits TU	Cour se mater ial	Reader:Lucht - & Ruimtevaart in Duurzame Ontwikk	ader:Lucht - & Ruimtevaart in Duurzame Ontwikkeling, (in Dutch). Available at Aerospace						
English course material is available on request. Non-d utch speaking persons can ask for a personal approach of this course. Description This course covers the background of Sustainable Development in general engineering and the specific applications in aerospace engineering. The lectures give information about global problems like climate change, technology dynamics (e.g. How does technology develop? When will there be a new paradigm in aviation?), social dynamics (e.g. what drives man? Can behaviour be changed? Why is Schiphol A rport argued and not the Travel Agency?), economics equilling sustainability (e.g. Short Term versus Long Term profits), the justice system and sustainability (e.g. What is the use of International treaties and protocols concerning for instance climate or aviation?) and Worldwide Development of Countries (e.g. Can there be worldwide Sustainable Development without the developments of third world countries to the level of the Western World?). Education Credits TU		Engineering.							
Description This course covers the background of Sustainable Development in general engineering and the specific applications in aerospace engineering. The lectures give information about global problems like climate change, technology dynamics (e.g. How does technology develop? When will there be a new paradigm in aviation?), social dynamics (e.g. what drives man? Can behaviour be changed? Why is Schiphol A rport argued and not the Travel Agency?), economics equilling sustainability (e.g. Short Term versus Long Term profits), the justice system and sustainability (e.g. What is the use of International treaties and protocols concerning for instance climate or aviation?) and Worldwide Development of Countries (e.g. Can there be worldwide Sustainable Development without the developments of third world countries to the level of the Western World?). Education Credits TU		English course material is available on request. Nor personal approach of this course.	n-dutch speaking	persons	can ask for a				
The lectures give information about global problems like climate change, technology dynamics (e.g. How does technology develop? When will there be a new paradigm in aviation?), social dynamics (e.g. what drives man? Can behaviour be changed? Why is Schiphol A rport argued and not the Travel Agency?), economics equilling sustainability (e.g. Short Term versus Long Term profits), the justice system and sustainability (e.g. What is the use of International treaties and protocols concerning for instance climate or aviation?) and Worldwide Development of Countries (e.g. Can there be worldwide Sustainable Development without the developments of third world countries to the level of the Westem World?). Education Asserment	Description	This course covers the background of Sustainable specific applications in aerospace engineering.	his course covers the background of Sustainable Development in general engineering and the						
(e.g. How does technology develop? When will there be a new paradigm in aviation?), social dynamics (e.g. what drives man? Can behaviour be changed? Why is Schiphol A rport argued and not the Travel Agency?), economics equilling sustainability (e.g. Short Term versus Long Term profits), the justice system and sustainability (e.g. What is the use of International treaties and protocols concerning for instance climate or aviation?) and Worldwide Development of Countries (e.g. Can there be worldwide Sustainable Development without the developments of third world countries to the level of the Western World?). Education Credits TU Asserment ECTS		The lectures give information about global problems	s like climate cha	ange, tech	nology dynamics				
dynamics (e.g. what drives man? Can behaviour be changed? Why is Schiphol A root argued and not the Travel Agency?), economics equilling sustainability (e.g. Short Term versus Long Term profits), the justice system and sustainability (e.g. What is the use of International treaties and protocols concerning for instance climate or aviation?) and Worldwide Development of Countries (e.g. Can there be worldwide Sustainable Development without the developments of third world countries to the level of the Western World?). Education Credits TU Asserment ECTS		(e.g. How does technology develop? When will the	re be a new parad	digm in av	viation?), social				
and not the Travel Agency?), economics equilling sustainability (e.g. Short Term versus Long Term profits), the justice system and sustainability (e.g. What is the use of International treaties and protocols concerning for instance climate or aviation?) and Worldwide Development of Countries (e.g. Can there be worldwide Sustainable Development without the developments of third world countries to the level of the Western World?). Education Credits TU Asserment ECTS		dynamics (e.g. what drives man? Can behaviour be	changed? Why	is Schiph	ol A rport argued				
Term profits), the justice system and sustainability (e.g. What is the use of International treaties and protocols concerning for instance climate or aviation?) and Worldwide Development of Countries (e.g. Can there be worldwide Sustainable Development without the developments of third world countries to the level of the Western World?). Education Credits TU Asserment ECTS		and not the Travel Agency?), economics equilling s	sustainability (e.g	. Short Te	rm versus Long				
and protocols concerning for instance climate or aviation?) and Worldwide Development of Countries (e.g. Can there be worldwide Sustainable Development without the developments of third world countries to the level of the Western World?).		Term profits), the justice system and sustainability	(e.g. What is the	use of Inte	emational treaties				
Countries (e.g. Can there be worldwide Sustainable Development without the developments of third world countries to the level of the Western World?). Education Credits Assement FCTS		and protocols concerning for instance climate or av	and protocols concerning for instance climate or aviation?) and Worldwide Development of						
third world countries to the level of the Western World?). Education Assemant ECTS		Countries (e.g. Can there be worldwide Sustainable Development without the developments of							
Education Credits TU		third world countries to the level of the Western Wo	rld?).						
Assessment	Education		Credits	TU					
Lord	Assesment			ECTS					

et3021wb	Electrical drives				
Lecturer	Bauer, dr. i r. P.				
Cour se mater ial	Deleroi, W., "Electrical D	rives"			
Description	Characteristics of machin converters for use in drive of drives in combination	nes, control possibilities of es with DC- and A C- moto with power converters, cho	DC- and AC-mac rs, princips and c ise of drives	hines, po onbinatio	ower electronic ons as well as control
Education	Lecture 0/0/3/0		Credits	TU	2.5
Assesment	Oral			ECTS	4

et4245wb	Electromechanica	al Systems						
Lecturer Course material	Polinder, dr.ir. H. J.C. Compter, 'Mechatror	Polinder, dr.ir. H. J.C. Compter, 'Mechatronics, Introduction to Electromechanics', dictaat						
	Waarschijnlijk ook: Ned N 2001	Vaarschijnlijk ook: Ned Mohan, 'Electric drives, an integrative approach', Minneapolis, Mnpere, 001						
Description	Elektromechanica, magn gelijkstroommotoren, aan	lektromechanica, magnetische circuits, permanente magneten, gelijkstroommotoren, borstelloze elijkstroommotoren, aandrijvingen, lineaire motoren, uitvoeringsvormen, basisprincipes en						
	begrenzingen							
Education	Lecture 0/0/0/3		Credits	TU	3			
Assesment	Written / assignment			ECTS	4,5			

Study guide Mechanical Engineering

mt212	Marine engineerin	ig B					
Lecturer (Course material	Klein Woud, prof. ir. J. J.Klein Woud, "Maritieme Werktuigkunde B", 2002.						
Description	Shafting dynamics, torsic vibrations. Shaft alignme Balancing of piston engin	nal and axial vibrations in nt. Flex ible mounting of eq les.	(diesel engine) d uipment. Vibratio	rive syst	ems. Whirling ise isolation.		
Education Assesment	Lecture 2/0/0/0 Written		Credits	TU ECTS	2 3		
mt213	Marine engineerin	ng C					
Lecturer (course material	Grimmelius, ir.ing.H. Lecture notes						
Desc ription	Maintenance concepts. R Condition monitoring.	Relation with Life Cycle Co	sts. Reliability, A	vailability	. Fault tree analysis.		
Education Assesment	Lecture 0/2/0/0 Written		Cr edits	TU ECTS	1 1,5		
mt215	Marine engineerin	ıg A					
Lecturer (course material	Klein Woud, prof. ir. J Klein Woud, J., Marine Er	ngineering, Design of Prop	oulsion and Elect	ic Powe	r Supply Systems		
Description	Propulsion Systems, dies opellers, matching machi	sel engines, gas turbines, nery plant with propulsor,	transmission syst electric power ge	ems, cor neration.	ntrollable pitch		
Education Assesment	Lecture 0/3/0/0 Written	Test 0/:2/0/0	Cr ed its	TU ECTS	1.5 2.25		

mt216	Internal combustion	on engines				
Lecturer Course material	Klein Woud, prof. ir. J. J. Klein Woud, Marine En	gineering, Design of Prop	ulsion and Electr	ic Power	Gen	eration Systems
Desc ription	Piston Engines (Diesel an and Combustion. Perform Construction. Operating e	nd Otto) and gas turbines. ance. Pressure charging. nvelope. Fuels.	Working principle Introduction to th	es. Indica e modyr	ator El amic	iagram. Ignition analysis.
Education Assesment	Lecture 0/0/0/4 Written		Cr edits	TU ECTS	2 3	

mt518	Resistance and propulsion 1	
Lecturer Course material	Terwisga, prof. dr. ir. T. van	
Description		
Education Assesment	0/0/x /0 Credits TU 1.5 ECTS 2.25	

mt518p	Tests resistance a	nd propulsion 1			
Lecturer	Bom, ing. C.J.				
Cour se mater ial	Handleiding practicum W	eerstand en Voortstuwing			
	zie Blackboard				
Description	Uitvoeren van de openwa van het laboratorium voor cavitatietunnel achter de	ter schroef-, weerstands- Scheepshydromechanica sleeptank.	en voortstuwings a en cavitatie-inco	sproef in eptie proe	de kleine sleeptank
Education	0/0/x /0		Credits	TU	0.5
Assesment	Written report			ECTS	0.75

mt205	Project 2-4 Projec	t Design Propulsio	on Plant					
Lecturer	Grimmelius, ing.ir. H.T, Frouws jr. J.W., Dijkstra, dr. S., Niet, ing. H. de							
Course material	Handleiding Project mtp2	204						
	Klein Woud, J., Stapersm	Klein Woud, J., Stapersma, D., 'Marine Engineering, part I: 'Design of Propulsion and Electric						
				power	Gen	eration Systems'		
Desc ription	Voortstuwingssystemen, voortstuwingsregeling, si milieumaatregelen.	elektriciteitsopwekking, er mulatie, dynamisch gedra	nergiebalans, moc g, MarPol regelge	lelvormiı ving, risi	ng, icoan	alyse,		
Education	Lecture 0/0/0/x		Cr ed its	TU	4			

st310	Thermodynamics	of mixtures				
Lecturer (course material	Kooi, dr.ir. H.J. van der J.M.Smith, Introduction to	Chemical Engineering Th	nermo dynamics,4	th edition	ı	
Description	Heat capacity and heat- a the calculation of thermood the corresponding states substances and mix tures will be considered. The not processes such as separ	and Gibbs energy of reacting dynamic quantities.Estima principle and group contril whereby properties of the option of ex ergy as used for ations and chemical react	on data, and equa tion of thermodyn bution methods.N chemical potenti chemical conver ions such as com	itions of a namic da lon ideal al,the fug sions.Ap ibustion.	state ta,us beha gacity oplica	nescessary for ng for ex ample iviour of pure i/ and the activity tion to physical
Education Assesment	Lecture 0/0/2/2 Written		Cr ed its	TU ECTS	2 3	

tn3111wb	System Identificat	tion					
Lecturer Course material	Hof, dr. ir. P.M.J. van den Lecture Notes: P.M.J. Van den Hof, "System Identification", 1998						
Description	Experimental modelling of analysis. Identification of parametrised model sets Approx imate modelling; a closed loop data; model w	of dynamical systems; met transfer functions. Repres . Identification by predictio algorithms. Ex periment des validation. MATLAB toolbo	hodology. Discre entations of linea n error minimizat sign and data ana x .	te-time s ir models ion; leas alysis; id	ignal: s; bla: t squ: entific	s and system ck-box models; ares methods. cation from	
Education	Lecture 0/0/2/2		Cr ed its	TU	5		
Assesment	Oral			ECTS	7,5		

wb1310	Multibody dynam	ics A			
Lecturer Course material	Wisse, ir.M. Lecture Notes				
Desc ription	Applied Dynamics of Me General Equations of mo Solution Techniques for Computer-Oriented Multi	chanical Systems, Multibo tion of a three dimensional a mix ed Differential and Al body System Dynamics M	dy System Dynan Rigid Body Cons gebraic System C ethods	nics. Mo straints in Overview	dellirg Techniques n a Multibody System of the available
Education Assesment	Lecture 0/0/0/2 Written	Other: 4. Lab report	Cr edits	TU ECTS	2 3

wb1406	Experimental mec	hanics			
Lecturer	Booij, J. MSc., Woerkom,	, dr.ir. P.Th.L.M. van			
Cour se mater ial	Directly via lecturer				
Description	Measurement of strains a mechanics, underlying pr pattem methods with ligh response to dynamic load determination of paramete	nd changes of shape that inciples. Strain gages, pho t, laser light methods, con ding: modal analysis, regis ers, and applications.	result from static otoelastic coating nparison of metho stration of the resp	loading, s, thermo ods. Meas ponse, si	role of ex perimental pelastic method, surernent of gnal conditioning,
Education	Lecture 0/0/2/2	Other: 15 hours	Credits	TU	2
Assesment	Oral			ECTS	3

wb1409	Theory of elastici	ty						
Lecturer Course material	Keulen, prof. dr. ir. A. var Y.C. Fung, Foundations M.E. Gurtin, An Introduct vol. 158, Academic Pres I.S. Sokolnikoff, Mathem R.W. Ogden, Nonlinear e	eulen, prof. dr. ir. A. van .C. Fung, Foundations of Solid Mechanics, Prentice Hall, New York, 1965 I.E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering, ol. 158, Academic Press, New York, 1982 S. Sokolnikoff, Mathematical Theory of Elasticity, McGraw Hill, 2 nd edition, New York, 1956						
Description	Stress and strain tensors principles, energy theore	ress and strain tensors, elastic constitutive equations, linear theory of elasticity, energy inciples, energy theorems, stress functions, composite theory, homogenization						
Education Assesment	Lecture 2/2/0/0 Oral	Other: 2 Excersises	Cr edits	TU ECTS	2 3			

wb141(Continuum mech	anics			
Lecture	vacancy				
Cour se mater ia	Lecture notes				
Descriptior	This course is concerned is central to basically all presently in use in mech continuum theory. At the are emphasized, as well concerning the behaviou balance equations. But, the materials is accounted for between solids and fluid	I with modelling of matter in types of models/"theories" anical engineering. This co same time, the physical as as the corresponding range or of a continuous medium a the course also addresses or through so-called constitu- s are discussed.	n terms of a conti for the behaviour ourse demonstrate ssumptions that u es of applicability are emphasized: the way in which utive models. The	nuum. T of solids so the un underly c r. The fu deformat the vario e similari	his type of modelling s and fluids which are ification implied by ontir uum modelling lly general features tions, stresses, ety of behaviour of ties and differences
Education			Credits	TU	3
Assesmen	t Oral	Excersises		ECTS	5

wb1413	Multibody dynami	ics B		
Lecturer Course material	Schwab, dr.ir. A.L. Lecture notes			
Desc ription	Dynamics of Mechanical Method.	Systems, Multibody Syste	m Dynamics, Kinematics	, Finite Element
Education Assesment	Lecture 0/0/2/2 Essay	Other: 2!	Credits TU ECTS	2 3

wb1427	Advanced Fluid D)ynamics				
Lecturer	Delfos, dr. R., Nieuwstad	t, prof.dr.ir. F.T.M.				
Cour se mater ial	Dictaat Stromingsleer Vo	ortgezette Cursus A (wbm	t 1422A), in PDF-	-formaat	down	loadbaar.
	G.K. Batchelor, Introduction to Fluid Dynamics, Cambridge University Press.					
Desc ription	Stromingsleer, Kinematic Vervormingssnelheidsrel Stokes stroming	a, Dynamica, Bewegingsv atie, Navier-Stokes vergeli	vergelijkingen, Co jkingen, Potentia	ntinuïteit: altheorie	swel, , Grer	Spanning- ıslaagtheorie,
Education	Lecture $2/2/0/0$	Other 3	Credite	тн	3	
Assesment	Schriftelijk		Ci eulis	ECTS	4.5	

wb14	440	Engineering optin	nization			
Lect Course mate	urer erial	Keulen, prof.dr.ir. A. van P.Y. Papalambros et al. F	Principles of Optimal Desi	gn: Modelling and	d Comput	ation
Descrip	tion	Formulering van het optir Minimalisatie zonder nev methoden, gevoeligheids en voldoende voorwaard methoden: Nelder Mead, program mering: branch a	nalisatieprobleem: ontwer envoorwaarden, Lineair pi analyse, dualiteit, Minima en, gevoelig- heidsanalyse simulated annealing, gene ind bound methoden, Inlei	pvariabelen, doel og ramme ren: sin lisatie met neven e, SQP, penalty fu e tische algoritme ding FE-optimalis	functie ei nplex met voorwaai unctie me s, Gehee sering	n coristraints thode, interieur rden: noodzakelijke ethode, Nulde orde eltallige en discrete
Educa Assesn	tion nent	Lecture 2/2/0/0	Test: 2 hrs	Credits	TU ECTS	2 3

wb2301	System identification and parameter estimation						
Lecturer	Helm, Prof.dr. F.C.T. var	elm, Prof.dr. F.C.T. van der					
Cour se mater ial	Dictaat Signaalanalyse,	ctaat Signaalanalyse, Van Lunteren / Dankelman (in Dutch)					
	Dictaat Systeemidentific	ictaat Systeemidentification A					
	verheads						
	Demonstration programs in Matlab						
Description	Non-parametric system i open-loop and closed-loo	Non-parametric system identification based on estimators of spectral densities. Application to open-loop and closed-loop systems. Parameter estimation for linear and non-linear systems.					
Education	Lecture 0/0/2/2		Credits	TU			
Assesment	Report	Oral		ECTS			

wb2303	Measurement the	ory and praxis					
Lecturer Course material	Teerhuis, ir. P.C., Grimbe	ergen, prof.dr.ir.C.					
Description	Statical and dynamical p dimensional measuremen devices. Conditioning, tra	tatical and dynamical performance of mechanical measurement systems. Motion and imensional measurement devices. Force, torque, pressure and temperature measurement evices. Conditioning, transmission and manipulation of measurement data.					
Education	Lecture 2/2/0/0		Cr ed its	TU	2		
Assesment	Oral			ECTS	3		

wb2305	Digital control					
Lecturer Course material	Dijkstra, dr. S. K.J. Åström, B.Wittenma	rk 'Computer-controlled Sy	stems, Prentice I	Hall ,199	0, 2 nd	edition
Description	Computer control. Sampl time systems. State-spac Analysis of discrete-time Disturbance models. Rec Approx imations of contir Obvservers. Pole-placen Prediction.Minimum-varia	ing of continuous-time sign ce systems in discrete-time systems. Stability. Control luction of effects of disturb nuous design. Digital PID-co nent.Optimal design metho ance control. LQG -control.I	nals. The samplin e. The z-transform lability, reachabil ances. Stochasti ontroller. Stata-sp ds. Linear Quad r mplementational	ng theore n. Selecti ity and o c models bace des atic cont aspects	em. Ali ion of observ s.Desi ign m rol. of dig	iasing. Discrete- sampling-rate. 'ability. ign methods. ethods. gital controllers.
Education Assesment	Lecture 0/4/0/0 Written		Credits	TU ECTS	2 3	

wb2308	Biomedical engineering design	
Lecturer (کourse material	Plettenburg, dr.ir. D.H. Just L. Herder, Dick H. Plettenburg, reader: "Ontwerpen in de medische techniek"	
Description	Medical systems design, Diagnosis; Treatments, Orthopaedics, Rehabilitation	
Education Assesment	Lecture 2/0/0/0Cr editsTU3ProjectECTS5	

wb2309	Introduction spec	cialization MMS					
Lecturer Course material	Wieringa, Prof.dr.ir. P.A. G.L.M. Passier, Graduati	Vieringa, Prof.dr.ir. P.A.					
	landouts						
Description	Introductie sectie en vak toelichting afstudeerverp	roductie sectie en vakgebied MMS, toelichting verplichte en keuzevakken hoofdvak MMS, elichting afstudeerverplichtingen presentatie onderzoeksprojecten					
Education	Lecture x /x /0/0	Excursions	Credits	TU	0.5		
Assesment				ECTS	1		

wb2311	Introduction Mod	elling						
Lecturer	Bosgra, prof. ir. O.H., Ver	sgra, prof. ir. O.H., Vergo uwen, ir. F.J., Kramer, dr. ir. H.J.M.						
Cour se mater la	Course notes for wb2405	urse notes for wb2405 Preliminary version, 120 pages, 1994 Revised version canuary 1996						
Description	Physical modelling of dyn of the model. System bou Macroscopic versus mich models, formulated in ten based on time scales and the field of process techn	namic systems. Basic notio undaries, subsystems, con roscopic models. Non-linea ms of partial differential eq d time moments. Bilaterally nology	ons of modelling. Iservation laws. (ar model behavior Juations. Model a y coupled physica	Methodo Causality ur. Spatia pproxim al subsys	blogy, , time ally di ation stems	goals, purpose scales. stributed and reduction, . Ex amples from		
Education Assesment	Lecture 4/0/0/0 Oral		Cr edits	TU ECTS	2 3			

wb2400	Proces Control					
Lecturer	Dijkstra, dr.S.					
Cour se mater ial	-Copies of the powerpoint	t slides are available.				
	-The ex amples for the sir	mulations with explanation	are available as	hard cop	y an	1 on Blackboard
Description	Dynamic control, Real pro Common control loops, L cascade control, feedforw	ocess characteristics, inear controllers, nonlinea /ard control, interaction an	r control element d decoupling, ap	s,multiple plication	e-loo s.	o systems,
Education Assesment	Lecture 0/0/2/2		Credits	TU ECTS	2 3	

wb2402	Hydraulic servo s	systems				
Lecturer	Teerhuis, ir. P. C.	nthesis and design of bud	mulia agne gyata	ma and i	ainalina	
Course material	Blackburn, Reethof and S	Blackburn, Reethof and Shearer, Fluid power control, Wiley and Sons				
Desc ription	Dynamic behaviour of hydraulic servo systems Design of (low function) servo systems Hydraustatic bearings, hydraulic line dynamics					
Education Assesment	Lecture 0/0/2/2		Cr edits	TU ECTS	2 3	

wb2404	Man-machine sys	tems			
Lecturer	Wieringa. Prof. dr. ir. P.A.				
Cour se mater ial	Syllabus				
	Handouts				
Description	Menselijke supervisie, for	uten en betrouwbaarheid, l	nu man ope rator m	rodel,	
	beslissingsondersteunen	d systemen			
Education	Lecture 2/2/0/0		Cr ed its	TU	3
Assesment	Oral			ECTS	4,5

wb2407	Human movement control
Lecturer	Helm, prof.dr. F.C.T. van der
Cour se mater ial	Reader: Human movement control
	Hand outs
Description	1. Introduction, joints, ligaments, muscles. 2. Three-dimensional motion description, Euler angles, helical axis. 3. 3-D motion recording. 4. Muscle properties, muscle models. 5. Musculo skeletal models, parameters, EM6-recordings. 6. Inverse dynamics, forward dynamics, optimization. 7. Motion control, stabilization. 8. Equilibrium point' hypothesis. 9. Internal representation, a daptive model refere nce control. 10. Propriocepsis, muscle spindes, Golgi tendon organs. 11. A-reflex ive muscles, reflex ive muscles, neural transmission delays. 12. Muscle stiffness, join: stiffness, stabilization. 13. Applications tot the human arm, shoulder and elbow. 14. Artificial neural networks as a model of the central nervous system. 15. Comparison with robotics.
Education	Lecture 0/4/0/0/0 Cr edits TU 3
Assesment	Oral ECTS 4,5

wb2408	Fysiological syste	ems					
Lecturer Course material	Dankelman, prof. dr. J., Grimbergen, prof. dr. ir. C.A. J. Dankelman, C.A. Grimbergen, Fysiologische Systemen (Physiological Systems) lecture notes						
Description	Functioning of physidogi heart, circulation, muscle techniques, design of arti	ical systems described fror es, lungs, kidneys and nerv fical organs	n an enginee ring e system. Modell	point of ling, mea	view asure	. Subjects are ment	
Education Assesment	Lecture 2/2/0/0/0 Oral		Cr edits	TU ECTS	2 3		

wb2413	Instrumentation in	n the process indu	stry		
Lecturer Course material	Weiden, dr. ir. A.J.J. van	der			
Desc ription	The course is divided in s different procedures nece Planning will be a subjec Process Control and Instr selective control and the p block further details for in automatisation and the sy instrumentation and supp In the fourth block different treated.	several blocks. First a indu essarily to start a design cy t to be focussed on. The n u mentation. Special atten- principles of measuring, va strument en gineering shal vstems which might be use ly systems, fire and gas do nt distributed process cont	Istrial ex ample wi ycle and disciplin- nain topics in the tion will be given alves types and the l be provided suc- ed. Other subjects etection and ex pl rol and informatic	II be give es which second b to e.g. s heir appli h as the s in this h osion da on manage	In to show the might be involved. olock of lectures are plit range and ication. In the third level of block are e.g. nger. gement systems are
Education Assesment	Lecture 0/0/2/2		Credits	TU ECTS	2

	wb2414	Mechatronical des	sign			
	Lecturer	Teerhuis, ir. P.C.				
(Course material					
	Desc r iption	Modellen van mechanisc Overdrachtsfuncties. Actuatoren: hydraulische snelheid en versnelling. I	he systemen. Dynamisch , pneumatische en (vooral Regeling	gedrag, eigenfrec) elektrische. Ser	juenties, isoren: p	demping. osititi, kracht,
	Education Assesment	Lecture 2/2/0/0		Credits	TU ECTS	2 3

wb2420	Control theory						
Lecturer Bosgra, prof.ir. O.H., Vergouwen, ir. F.J. Course material Friedland.B. Control System Design: An Introduction to State-Space Methods, 1936							
		r realand, b. control bystem besign. An introduction to state-space methods, 1990					
Description	Control enginee ring: bas theory, frequency domain response. Pole assignme separation principle. LQ r compensation. Tracking	ic theory. State space desonanalysis. Controllability, or ent, state feedback. Linear regulator and LQG theory. control, servomechanismo	cription of linear c observability. Loc observers, Kalma L Q control system design.	lynamic op shapir an filter. m desigr	systems. Stability ıg for dynamic Desiyn and ı, dyrıamic		
Education	Lecture 4/0/0/0		Credits	TU	4		
Assesment				ECTS	6		

wb2421	Multivariable cont	rol systems			
Lecturer	Weiiden, dr.ir. A.J.J. van	der			
Cour se mater ial	Multivariable Feedback C	Control Analysis and Desig	n. S.Skogestad, I	.Postlet	hwaile. John Wiley &
	Sons, ISBN 0-471-94330-	-4, and Lecture notes			
Description	Review of single loop fee	dback design using freque	ency domain meth	ods. Po	les, zeros and
	stability of multivariable fe	eedback systems. Decoup	ling by state-feed	back for	linear as well as
	nonlinear systems. The re	obust servomechanism pr	oblem for multivar	iable sy	stems:
	asymptotic tracking of refe	erence signals in the pres	ence of disturban	ces. Nyo	quist-like multivariable
	design techniques: the ch	naracteristic-locus method	and Nyquist-array	/ method	ds. Performance and
	robustness of multivariab	le systems. The use of sir	ngular values for a	ssessin	g performance;
	generalization of the class	sical control theory. Repre	sentations of mod	del unce	rtainties. The use of
	the H-infinity norm and the	e structured singular value	e to an alyse robus	st stabili	ty and robust
	performance. The choice	of suitable weighting fund	tions to specify p	erforman	ce fc r obtaining an
	H-infinity controller.				
Education	Lecture 0/0/4/0		Credits	TU	4
Assesment	Oral and exercises			ECTS	6

wb2422	Modeling 2				
Lecturer	Bosgra, prof.ir. O.H.				
Cour se mater ial					
Description	Modellen in differentiaal- objectgeoriënteerde mod Modelvereenvoudiging g simulatiegereedschappel gedrag.Modelvorming va reactoren, walsmechanis	algebraïsche vergelijkinge lellen. Index -problemen, sy ebaseerd op balancering. F n, modelvereenvoudiging. In onzekerheden, gevoeligt smen, aandrijfsystemen	en. Koppeling van vsteemmatrix van Ruimtelijk verdee Niet-lineaire eigen neidsanalyse. Vo	a deelsys a Rosenb Ide syste nschappe orbeelde	temen, rock. emer, en, g obaal en lokaal n, zcals chemische
Education	Lecture 0/4/0/0	Assignment: 10x4	Cr ed its	TU	4
Assesment				ECTS	6

	wb2423	Introduction Proje	ect SC			
с	Lecturer ourse material	Teerhuis, ir.P.C., Weiden Lecture notes	, dr.ir.A.J.J. van der			
	Description	To achieve good controlle interest. In this project the and Signal Analysis will b continuous-time techniqu sessions use a digital sig are programmed via the system design software.	er designs it is necessary t e concepts and theory of th be reviewed. Implementatic es on real ex perimental se and processing controller n Simulink block dagram lan	to connect theory te basic program on issues of e.g. I ervo-systems are nanufactured by o iguage which is p	with pro conce m PID contri treated. SPACE. part of the	blems of practical ing Control Systems rollers via The laboratory . These controllers & Mailab control
	Education	Project x /0/x /0		Credits	TU	
	Assesment				ECTS	3

wb2425	Integration Project	t			
Lecturer Course material	Huesman, ir. A.E.M.				
Desc ription	In dit afsluitende project v grotere en meer complex de orde komen. De gebie ex perimentele modelvorr van ontworpen regelstrate voor het ex perimentele w	wordt de stof uit de grote h e opstelling. Tevens zulle den waar met name op wo ning, simulatie van systee egie. Er zijn mechanische verk.	oofdvakcolleges n hierbij een aant ordt ingegaan zijr m en regeling, im opstellingen zow	operation al praktis n, theoret plementa rel als pro	neel gemaakt op een sche problemen aan ische en atie en beproeving poessen beschikbaar
Education Assesment	Project x /x /x/x		Cr ed its	TU ECTS	4 6

wb2427	Predictive Modelli	Predictive Modelling						
Lecturer Course material	Eijk, prof. dr. ir. J. van Lecture notes	Eijk, prof. dr. ir. J. van						
Description	Mechatronisch ontwerpen simuleren, dynamisch geo	lechatronisch ontwerpen, gedra g voorspellend ontwerpen, systeem ontwerp, modelleren, imuleren, dynamisch gedrag, modaal analyse, servo systemen, machine dynamica						
Education Assesment	Lecture 0/0/4/0 Written		Cr edits	TU ECTS	2 3			
wb2428	Mechanical constr	uction principles						
Lecturer (Course material)	Soemers, dr.ir. J. Lecture notes							
Description	Mechatronisch ontwerpen ontwerpen, systeem ontwe	, mechanisch, constructie erp, finite element modell	es, stijfheid, kinen ing, dynamisch g	natica, m edrag	iechanismen,			
Education Assesment	Lecture 4/0/0/0 Written		Cr edits	TU ECTS	2 3			

wb2430	Mechatronic Project			
Lecturer Course material	Teerhuis ir.P.C., Spronck ir.J.W.			
Description	Aandacht wordt besteed aan het le ren mechatronis De stof zoals behandeld in de hoofdvakcolleges va Mechatronics wordt getoetst en toegepast op versc onderzoek. De studenten krijgen een opdracht en z werkgebieden zoals: predictive modelling, analyser construeren, ex perimenten, meten, regelen, commu	ch te denken, te v n Systeem en Re hillende opstellin ullen zelf actief z ren, modelleren, s uniceren en versla	werken er geltechni gen uit he ijn op uite imuleren, aglegging	n te communiceren. iek en van Advanced et lopende eenlopende , ontwerpen,
Education Assesment	Project in all semesters Report	Credits	TU ECTS	6 9

wb2431	Bone mechanics	and implants						
Lecturer	Linden, mw. Dr. J. van de	nden, mw. Dr. J. van der, Valstar, dr.ir. E.R.						
Cour se mater ial	S.C. Cowin, Bone Mecha	.C. Cowin, Bone Mechanics Handbook, CRC Press, Boca Raton, FI, 2001.						
	R.B.Martin, D.B Burr, Ske	B.Martin, D.B Burr, Skeletal Tissue Mechanics, Springer, New York						
	Bucchorn and Willert, Te	Bucchom and Willert, Technical Principles, Design and Safety of Joint Implants,						
Description	In this course you will lea constituent of the skeleto prostheses. Topics cover and strength, composite in differentiation theories, m bone	am about the biomechanica in, and how bone is replac red are: Bone microstructu nodels, damage mechanio iechanobiology of bone ce	al behaviour of bo ed by implants su re and bone cell l cs, bone remodell lls, bone prosthes	one as the uch as joi biology, <i>i</i> ling theor ses and t	e main load-bearing int replacement Anisotropic elasticity ries, tissue issue-enginee red			
Education	Lecture 0/2/2/0		Credits	TU	2			
Assesment	Oral			ECTS	3			

wb2432	Biomechatronics						
Lecturer Course material	lelm, prof.dr.ir. F.C.T. van der, Plettenburg, dr. ir. D.H., Herder, dr. ir. J.L. .ecture notes						
Desc ription	Biomechatronica is een s functioneren en coördinat hulpmiddelen ter onderste hulpmiddelen zoals een o patiënten waarbij onderde functie terug te geven.	amentrekking van biomec ie van het bewegingsappa euning van de functies var orthese, prothese of spierst elen van het bewegingsapp	hanica en mecha araat centraal, en n het bewegingsa timulatie die gebr paraat niet meer o	tronica. het ontw pparaat. uikt kuni optimaal	In dit verper Voor nen w werk	vak staat het n van beelden zijn rorden o m ten, weer een	
Education	Lecture 0/0/2/2		Credits	TU	3		
Assesment				ECTS	4.5		

wb3303	Mechanisms				
Lecturer	Klein Breteler, dr.ir. A.J.				
Cour se mater ial	Lecture notes Part 1: theo	iry			
	Lecture notes Part 2: user	r manual of computer prog	gram		
Desc ription	Kinematics, kinetostatics numerical method (FEM),	and dynamics of (co-plana system drive and mechar	ar) mechanisms, nism and process	kinemati	ic oplimization,
Education	Lecture 0/0/2/2		Credits	TU	2
Assesment	Excersise			ECTS	3

wb3406A	ntroduction transportation engineering							
Lecturer	Drenth, ir. K.F., Klein Breteler, dr. ir. A.J., Rijsenbrij	, prof. ir. J.C.						
Cour se mater ial	C. Spaans, Bandtransporteurs. P. Aberkrom, Disco	ntinu transport.						
	C. Pajer e.a.; Grundlagen der Fördertechniek.	Pajer e.a.; Grundlagen der Fördertechniek.						
Description	Description of transportation. The importance of tran- employment. Manifestation of goods. Containers an streams. Container terminals and equipment for cor- problems in equipment. Bulk terminals and equipment Continuous and discontinuous transhipment. Interact Spill, dust, wear and noise. Belt conveyors: basics, conveyors. Planetary gears, design and application consumption and transportation.	nsport for the Dur nd bulk materials. ntainer h andling. ent for the handlir ction between bu design and cons in equipment. Er	tch econ The inc A select ngof bulk Ik materi truction. nvironme	omy and rease of container ion of dynamic anaterials. al and equipment. Same for screw ent, energy				
Education	Lecture 2/2/0/0	Credits	TU	2				
Assesment	Written		ECTS	3				

wb3406B	Transport engine	ering and crane de	sign		
Lecturer Course material	Gerstel, dr.ir. A.W. Gerstel, A.W.: "Transport	t Engineering and Crane D	esign. Drawings	and anno	otaticns", 3 rd edition
Description	Containerte minals, conta systems, lay-out front-rea standards, dynamics, win hoisting and travelling ca	ainer- and crab loading and ich support, luffing cranes, ndforces, crack and folding ibles, box girders	l unloading gant r design of crane of bars and plate	ycranes, details, e es, rail-w	trolliy-cable engineering heel concept,
Education Assesment	Lecture 0/0/2/2 Oral	Other 0'0/2/2	Credits	TU ECTS	2.5 4

Study guide Mechanical Engineering

wb3407A	Introduction logis	stics					
Lecturer Course material	Lodewijks, prof.dr. G., Me H.M. Visser and A.R. var J.J. Coyle, E.J. Bardi en Handouts	idewijks, prof.dr. G., Mensch, ir. T.C.A., Ottjes, dr.ir. J.A. M. Visser and A.R. van Goor, 'The practice of logistic engineering' J. Coyle, E.J. Bardi en C.J. Langley Jr, The management of business logistics andouts					
Desc ription	Basic concepts of logistic Product model. Inventorie chains. Allocation of capa	es; Production, distribution es; production planning; fo acity.	and transport from recasting; inventor	n a logisti Ƴ manag	ical point of view. em ent. Logistic		
Education Assesment	Lecture 0/0/2/2 Written		Cr edits	TU ECTS	2 3		

wb3408	Dredging design				
Lecturer	Vlasblom, Prof.ir. W.J.				
Cour se material	Syllabus				
Description	Het ontwerpen van bagg Toepassingsgebied en te Produktieramingen en we Instrumentatie en automa	erwerktuigen op basis van echnische afbouw van de l erktuiggerelateerde bagge atisering.	de kennis van ba bekende baggerw rprocessen.	aggerproo	cess⊛n. n.
Education	Lecture 0/0/2/2		Credits	TU	2.5
Assesment	Written or Oral			ECTS	3.75

 wb3410	Large scale trans	port systems				
Lec tur er (Cour se mater ial	Rijsenbrij, prof. ir. J.C. inauguration speech, 200	8 and globalisation				
Desc ription	This course treats of mor college concentrates on t through in the six ties. Initially the container was developments will also co social economisch conse globalisation of the indus	idial cargo flows in the nor he phenomenon container s succesful for sea transpor ontrol the long distance lar equences and particularly t trial production will be trea	n-bulk area the so transport, a spec rtation, but more a ndtransportation. he role of contain ted	e called g tecular lo and mor Technolo tertransp	jenera ogistio e inte ogical ort by	al cargo. This cal break- rmodal I development, r the proces of
Education	Lecture 0/0/2/0		Credits	TU	1	
Assesment	Written			ECTS	2	

wb3413	Dredging process	ses 1				
Lecturer	Vlasblom, prof.ir. W.J., M	lasblom, prof.ir. W.J., Miedema, dr.ir. S.A., Matousek, dr.ir. V.				
Cour se mater ial	Syllabus	/llabus				
	Vlasblom, collegebook w	lasblom, collegebook wb3408B				
	Miedema, dissertation					
Description	Soil mechanical propertie	Soil mechanical properties of sand, clay and rock Description of the cutting process Cutting				
	theories of sand, clay and	theories of sand, clay and rock Breaching and erosion of sand Loading process of				
	hopperd redgers Sedimen	hopperd redgers Sedimentation process Modelling of overflow losses Case studies				
Education	Lecture 2/2/0/0		Cr ed its	TU	2.5	
Assesment	Written			ECTS	4	

wb3414	Dredging process	ses 2						
Lecturer	Vlasblom, prof.ir. W.J., M	liedema, dr.ir. S.A., Matous	sek, dr.ir. V.					
Cour se mater ial	Vlasblom, Matousek, col	legebook						
Description	1 Pumps and engines - C	Pumps and engines - Centrifugal dred ge pump, Pump characteristics and cavitation, Influence						
	of particles on the pump of	of particles on the pump characteristics						
	2 Hydraulic transport by p	opeline - 2-flow through pl	pelines, Newtonia	an tiulds, 	INON INEW tonian			
	3 Pump pipeline systems	and folg pipernes, measu	a's Production fa	u ctors				
	4 Case studies		3,1100000101110	01013				
Education	Lecture 0/0/2/2		Credits	TU	2.5			
Assesment	Written			ECTS	4			

wb3415	Simulation of tran	nsport systems wit	h Adams			
Lecturer Course material	Verheul, ir. C.H. ADAMS Starters Course	Manu al				
Desc ription	Aechanica, kinematica, dynamica, multibody systemen, multibody dynamics software, ransportsystemen, overslagkranen, bandtra nsporteurs, ontwerpproces					
Education Assesment	Lecture 0/0/2/0		Credits	TU ECTS	1 2	

wb3416	Design with Finite Element Method
Lecturer Course material	Bos, ir. W.v.d., Gerstel, dr.ir. A.W. Bos, W. van den, Collegedictaat "Ontwerpen met eindige elementen", 2000
Description	Eindige elementen methode, ontwerpen, transporttechniek, kranen, mechanica, modelleren
Education Assesment	Lecture 0/0/2/0 Credits TU 1 Assignment ECTS 1

wb3417	Discrete systems: modelling, prototyping, simulation & control							
Lecturer	Ottjes, dr. ir. J.A., Veeke	, ir. H.P.M., Sopers, ir. F.P.	M., Duinkerken, i	ir. M.B.				
Course material	hand outs							
Description	This is a course on the m method to quickly design environment. The method orientated modeling. Spe models for real-time cont transport system and a pr Those who have attained takes the form of a practi cases. Following on from environment (Tomas: see	This is a course on the modeling of discrete systems for transport and production. It deals with a method to quickly design flexible prototype models and to implement them in a simulation environment. The method is based on the systems approach in combination with process-orientated modeling. Special attention is paid to the modeling of controls and the use of these models for real-time control. A number of practical ex amples, including a production process, a transport system and a port will be considered. The first part of the course ends with a written test. Those who have attained a satisfactory result will be admitted to second part of the course. This takes the form of a practical. The students, working in project groups, develop mcdels of realistic cases. Following on from this, a model or part thereof is implemented in a distributed simulation						
Education	Lecture 2/2/0/0		Credits	TU	2			
Assesment	Written	Assignment		ECTS	3			

wb3419	Characterization &	handling bulk so	lid materials	5	
Lecturer Course material					
Description					
Education Assesment			Credits	TU ECTS	

wb4300A	Equipment for hea	at and mass transf	er				
Lecturer	Kramer, dr.ir. H.J.M.			_			
Cour se mater ial	J.M. Coulson, J.F. Richar	rdson, Sinnott; Chemical E	ingineering vol. 6	; Chapte	rs 7, 12		
	Scheidingsprocessen; ch	apters 1, 2, 4, 6, and "bijla	agen " I, III, IV.				
Description	diffusion, convective mas condensation, boiling, tut materials of construction.	iffusion, convective mass transfer, absorbers, strippers, extractors, convective heattransfer, ondensation, boiling, tube heatex changers, plate heatexchangers, condensors, evaporators, naterials of construction.					
Education	Lecture 2/0/0/0		Credits	TU	2		
Assesment	Written			ECTS	3		

wb4300B	Introduction to pu	imps and compres	sors					
Lecturer	Infante Ferreira, dr. ir. C.	fante Ferreira , dr. ir. C. A.						
Cour se mater ial	Touber, S., "Pompen en o	I ouber, S., "Pompen en compressoren", collegedictaat, Faculteit WbMI, TUD, 1996.						
Description	Introduction to pumps and displacement pumps. Co compressors: reciprocatir Roots-blowers and liquid	d compressors. Pumps. T mpressors. Thermodynam ng, helical screw, rolling p ring compressors. Radial	ypes. Definitions. ic principles. Pos iston, rotary vane turbocomp ressor	Centrifu sitive dis and scro s.	gal an placer bll con	id positive nent npressors.		
Education	Lecture 0/0/0/2/0		Credits	TU	1			
Assesment	Written			ECTS	2			

wb4302	Thermodynamics of energy conversion						
Lecturer	Woudstra, ir. N.						
Cour se mater ial	Lier, Prof.ir. J.J.C. van, E	nergietransformaties, deel	I: de grondslage	n van de	ther modynamica		
	Lier, Prof.ir. J.J.C. van, T	hermodynamische proces	sen in de centrale	e en mog	elijkheden tot het		
			V	erbeterer	van deze processen		
	Thermodynamische aspe	ecten bij energie-omzetting	en. Deel 2: Koeln	nachines	en warmtepompen		
Desc ription	Thermodynamics, energy conversion, exergy, exergy analysis, value diagram, exergy of fuel, power cycles, steam turbine systems, gas turbine systems, combined cycles, combined heat and power production, fuel cell systems, refrigeration cycles, heat pumps, gas ex pansion cycles, liquefaction of gasses, absorption cycles						
Education	Lecture 4/0/0/0		Credits	TU	3		
Assesment	Written			ECTS	5		

wb4303	Energy, society a	nd sustain ability				
Lecturer	Spliethoff, prof. dr. ing. H.					
Cour se mater ial	Lecture notes and sheets					
Desc r iption	This course gives a thorough introduction in the world of energy. The course wants to show the importance of energy in our society and especially the interdependencies between energy and worldwide developments in our society, economy and requirements towards sustainability and environmental protection. The course covers the worldwide energy supply and consumption, discusses resources of fossil and renewable energies, and describes technologies of fuel exploration and the variety of energy conversion technologies in large medium and small scale.					
Education	Lecture 0/0/4/0		Credits	TU	2	
Assesment	Written			ECTS	3	

wb4422	Thermal Power P	lants				
Lecturer	Spliethoff, prof.dr. H.					
Cour se mater ial	Copies of the sheets on t	he interne t				
	For some chapters a mar	or some chapters a manuscript will be available at the end of 2002				
Description	energy sources, thermal process schemes, optima combustion, circulation, s	power plants, thermodynar alisation, steam boilers, tur stability, heat transfer, radia	nics, ex ergy, ene bines, pumps, co ation, convection	ergy, cos ondensor , material	t-effectiveness, s, steam, is	
Education	Lecture 0/0/4/0	Other: 1	Credits	TU	3	
Assesment	Written			ECTS	4.5	

wb4423	Modelling and Simulation of Energy Conversion Systems						
Lecturer Course material	Colonna, dr. P. Course notes for wb4423 Engineering	, PowerPoint presentation	, Home page sec	tion The	mal ^P ower		
Desc ription	Physical modeling of dyn Lumped versus CFD moc Numerical Integration of S Simulation Languages, R Ex amples: Energy Conve	amic systems, Law of Cor leling, Energy Conversion Stiff Systems, Module com eal Time Simulation, Soft ersion Systems.	nservation, Exten Systems, Two-fa patibility, Propert ware Packages, I	sive and aze equa y Databa Reliabilit	Intensive Equations, itions, Heat Transfer, ases, Higher Level y Results, Simulators,		
Education Assesment	Lecture 0/0/4/0 Oral		Credits	TU ECTS	2 3		

w	b5428	Applied systems theory						
L	.ectur er	Dekkers, ir.R.	<u> </u>					
Courser	mater ial	- Prof. Ir. J. In't Veld, Analyse van Organisatie Probl	Prof. ir. J. in't Veld, Analyse van Organisatie Problemen, Stenfert Kroese, 1998, ISBN 90-11-					
		-Syllabus Wb5100						
Desc	cription	- What is systems engineering? What does systems	What is systems engineering? What does systems engineering apply to?					
		- Systems engineering notions : system, element, c	haracterization, n	elationsh	nips, environment,			
		sub and aspect systems, system state, contents and structure, process, behavior, goal/objective,						
		methods for target specification.	runction, task, system, environment, system boundary, system objective, importance of and methods for target specification					
		Black box approximation. Principle of indetermination	on of a structure,	levels of	aggregation,			
		zooming in and out.						
Ed	uc atio n	Lectures: four hours in the first two weeks of the	Credits	TU	1			
		semester, furthe r 2/0/0/0						
Ass	sesment	Written, Report, Presentation		ECTS	1,5			

wb5201	Power Drives						
Lecturer	Werff, Prof. Dr. Ir. K. van de r						
Cour se mater ial	K. van der Werff, Aandrijfsystemen						
Description	Characteristics of driven systems: Production mach	ines, transport ec	quipment	, hoist and lifting			
	machines, robots, pumps, etc. Characteristics of dri	ving machines: \	Nind- en	water mills, internal			
	combustion engines, turbines, electric motors and h	ydraulic drives.					
	Transmissions: Function and use of transmissions.	Clutches and bra	akes. Ge	ar transmissions.			
	Variable transmissions. Ex amples of complete syst	ems: Hand drillin	g machi	ne ind. Thermal			
	behavior. Centrifugal pump + asynchronous machine + piping. Boiler feed pump installation.						
	Treatment including: Modeling and simulation. Dynamic behavior: Simple Torsior vibration						
	calculations for multiple degrees of freedom systems. Transformation of Torque and Inertia.						
	Dynamic motor models. Ex amples: Dynamics stone	e crusher, dynami	ics asyn	chronous machine.			
Education	0/0/2/2	Credits	TU	2			
Assesment	Written		ECTS	3			

wb5303	Tribology						
Lecturer (Course material)	Beek, dr.ir. A. van Beek, dr. ir. A. van, Book "Tribology / Lifetime and Performance", 278 pp.						
Description	The machine runs, but for how long and what amount of maintenance is required, what machine temperatures will occur? In this coarse the fundamental aspects of lifespan and performance of machines and mechanisms are treated, that is tribology. Subjects included are friction, frictional heating, loadability, stick-slip, accuracy, wear, reliability, maintenance, lubrication and material selection.						
Education Assesment	Lecture 2/0/0/0 Written	E-leaming 2/0/0/0	Credits	TU ECTS	2 3		

wb5412	Micro Engineering	9					
Lecturer Course material	Pistecky, ir.P.V. P.V. Pistecky, Micro-tech WbMT	nniek, Constructie-elemente	en, part I en II, co	urse book	TU Delft, Faculty		
Description	Introduction in the field of sensors in micro enginee engineering, micro manip Finite element method as	f micro engineering. Descri pring. Magnetic circuits. Op pulators. Analysis of frictior s a design tool. Micro engir	iption of typical p tical components n, precision and n neering in medica	roducts. Ac Bearings eliability. S Il instrumer	stuators and in micro pring elements. ntation.		
		Lecture 2/2/2/0/0 Credits TU 2					
Education Assesment	Lecture 2/2/2/0/0 Written	Excersise	Credits	TU ECTS	<u>2</u> 3		
wb5414	Design of machin	es and mechanism	IS				
Lecturer Course material	Crone, prof.ir. H.A., Werfl lecture notes wb5414	f, prof.dr.ir.K. van der					
Description	mechanization of product a machine, synthesis and electrical drives	tion, diagram of motion, dia d analysis of lirkages and d	agram of goalfund cam-mechanisms	ctions for th s, PLC, Gra	ie mechanisms in ifcet diagram,		
Education Assesment	Lecture 2/2/2/0 Written	Excersise	Cr edits	TU ECTS	3 5		
wb5415	Mainten ance technology						
Lecturer Course material	Smit, prof.ir. K. Smit, K; Maintenance Management, Faculty of Mechanical Engineering, 1989.						
Description	naintenance characteristics and maintenance concepts of technical systems, design for naintenance, workflow control, shutdown scheduling, control of spareparts and technical purchasing, organization structures for the engineering maintenance function, evaluation of naintenance processes, information for maintenance control.						

Education	Lecture 2/2/0/0	Credits	TU	1.5
Assesment	Written		ECTS	3

wb5417	Innovation of mar	Innovation of manufacturing				
Lecturer	Steinhoff, K.					
Cour se mater ial	Lecture notes: wb5417 Innovations in manufacturing					
Desc r iption	Introduction, aims of course, procedures, aims andprinciples of technological innovation, attention points in implementation of technological innovations, consulting hours, oral presentations by student groups					
Education	Lecture 0/2/2/0		Cr ed its	TU	2	
Assesment	Written			ECTS	3	

wb5420	Design of production systems							
Lecturer	Meijer, ir B.R., Neve, ir. J	jer, ir B.R., Neve, ir. J., Tichem, dr.ir. M.						
Cour se mater ial	Rembold U., Nn aji B.O.,	mbold U., Nn aji B.O., Storr A., "Compute r Integrated Manufacturing and Engineering", 1994						
Description	Organization of the manu	rganization of the manufacturing processes, automation possibilities and integration of activities						
	with the aim of maximizin	ng the effectiveness of the	se processes. The	change	e and effect of			
	customer orders on produ	uct variety and product life	cycle imposes new	w dema	ands on the			
	manufacturing processes	, e.g. quality improvement	, shorter design lea	ad-times	s, shorter			
	manufacturing lead-times	and reduction of costs. T	his can be done wi	ith the a	aid of new			
	technology, computer inte	egrated manufacturing wh	ich combines the th	hree pri	mary processes			
	(design and process plan	ining, production control a	nd scheduling and	the mar	nufacturing process)			
	and integrates them on tw	and integrates them on two area's, the material flow and the information flow. The requirements of						
	each primary process will be treated, the way to integration (by structuring, a utomation and							
	integration) and how to in	ntegration) and how to implement CIM with the aid of system- and reference models.						
Education	Lecture 4/0/0/0	Other: 2:0	Credits	TU	3			
Assesment	Written	Laboratory Projects	E	ECTS	4.5			

wb5421	Modelling of man	Nodelling of manufacturing					
Lec tur er Cour se mater ial	Luttervelt, ir. C.A. van, St Lecture notes	uttervelt, ir. C.A. van, Steinhoff, d.r.ir. K., Hoogstrate, dr.ir. A.M. ecture notes					
Description	afstemming van bewerkin bewerkingen, begrenzing milieuvriendelijk fabricere	ngen en behandelingen bir jen van bewerkingen, begr en	nnen een fabricag enzingen van de	jemethoc maakba	le , modellen van arheid,		
Education	Lecture 0/0/0/2		Credits	TU	1		
Assesment	Written			ECTS	1.5		

wb5422	Industrial assemb	bly					
Lecturer	Tichem, dr.ir. M.						
Cour se mater ial	Reader	Reader					
Description	Characteristics of assembly in different segments (capital goods, consumer products, electronic assembly, micro assembly), The assembly process, Industrial assembly technology, programming and control (follow-up of wb5420), Laboratory exercise: programming of a robot civil with sensor feedback, Concepts for assembly systems, internal logistics, Design For Assembly (DFA), including case study, Micro-assembly						
Education	Lecture 0/0/2/0	Laboratory Project	Credits	TU	1		
Assesment	Written	Case Study		ECTS	1.5		

wb5425	Fundamentals of machine tools	
Lecturer Course material	Karpuschewski, prof. dr. ing. habil. B. reader	
Description	Introduction to machine tool industry economic relevance structure guideways drives control dynamic behaviour	
Education	Lecture 0/0/0/2 Credits TU 1	
Assesment	Written ECTS 1.5	

wb5426	Capita selecta PTO						
Lecturer Course material	Tichem, dr. ir. M. Hand-outs						
Description	Sprekers vanuit de industrie presente ren verschiller van de productietechniek en de productieorganisati niet tot het standaard curriculum van PTO behoren. praten geeft duidelijke meerwaarde. Per jaar worden de sprekers geselecteerd. Voorbee zijn: organisatie van ontwerpprocessen, data manag kwaliteitsbeheersing, productielogistiek, opstarten w productiesystemen e.d.	prekers vanuit de industrie presente ren verschillende actuele onderwerpen vanuit het vakgebied an de productietechniek en de productieorganisatie. Hierdoor komen onderwerpen aan bod die iet tot het standaard curriculum van PTO behoren. Het feit dat de sprekers vanuit eigen ervaring raten geeft duidelijke meerwaarde. 'er jaar worden de sprekers geselecteerd. Voorbeelden van onderwerpen dia aari bod komen ijn: organisatie van ontwerpprocessen, data management, technology man agement, walietisbeheersing, productielogistiek, opstarten van de productie, optimalisatie van complex e					
Education	Lecture 0/3 or 4/0/0	Cr ed its	TU	1			
Assesment	Presentation or report		ECTS	1.5			

wm0504tu	ndustrial organisation A						
Lecturer	ker, prof. ir. H., Haaf, ir. W. ten, Sopers, ir. F. Sopers						
Cour se mater ial	ctaat wm0504TU, Industriële organisatie A, versie 1997/1998						
	Veld, J. in 't (1992). An alyse van organisatieproblemen. 6th edition						
Description	let college Industriële organisatie A vormt het vervolg op het college Inleiding in de bedrijfsleer						
	(wm0501TU), dat een brede kennismaking biedt met de wijze waarop (productie-'organisaties	;					
	binnen de maatschappelijke context functioneren, met de processen die zich binnen organisaties						
	afspelen en met de rol die de techniek, bepaalde technieken en de ingenieur daa in kunnen						
	spelen. Het college Industriële organisatie A gaat dieper in op de industriële voortprenging zelf.						
	Op welke verschillende manieren kunnen productieprocessen worden ingericht er						
	georganiseerd? Wat kan worden gedaan om deze processen productief, effectief en efficiënt te						
	laten verlopen? Welke rol speelt de mens daarin en hoe kan daarmee rekening worden						
	gehouden?						
Education	Lecture 4/0/0/0 Credits TU 2						
Assesment	ECTS 3						

wm0505tu	Industrial organiz	ndustrial organization B					
Lecturer	Haaf, ir. W. ten						
Cour se mater ial	victaat wm0505TU, Industriële organisatie B, versie 2001/2002						
	Senge, Peter M., De vijfd	Senge, Peter M., De vijfde discipline, De kunst & praktijk van de Lerende Organisatie, 1992					
Desc ription	Capita selecta van de bedrijfsleer. Elk jaar wordt door de docent e en belangrijk briek op het gebied van de bedrijfsleer gekozen. Dat boek wordt intensief bestudeerd. Verd er zijn er aan het vak 5 oefenmiddagen verbonden: 2 middagen over de benad ering van het kostpri svraagstuk vanuit de Delftse School voor Bedrijfskunde en 3 middagen over de Strategie Evaluatie Methode.						
Education	Lecture 0/0/7/0		Credits	TU	2		
Assesment	Presentation			ECTS	3		

wm0605tu	Elementary business economics					
Lecturer	Storm, dr. S.	Storm, dr. S.				
Course material	A.M.M. Biommaert en J.M.J. Biommaert (2000) Bed injiseconomische analyses. Bedrijseconomie vanuit managementperspectief, Ho uten: EPN. ISBN 90 11 056167.					
Description	Bedrijfseconomie is een tak van sport waar iedere afgestudeerd ingenieur mee te maken krijgt, of					
	hij / zij nu wil of niet. Om te komen tot een goede afweging en een juiste beslissing te kunnen					
	maken is net noodzakelijk dat bedrijven, maar ook overneidsinstellingen, de bedri iseconomische aspecten van hun organisatie en processen juist in kaart brenden. Bedrijfseconomische informatie					
	en criteria zijn daarom noodzakelijk. Na het succesvol volgen van dit vak zijn de					
	bedrijfseconomische principes geen mysterie meer. Bedrijfseconomische beginselen worden					
	actief toegepast en uitgediept in de practica die naast de hoorcolleges onderdeel van de cursus					
	uitmaken.					
Education	2/2/0/0		Credits	TU	3	
Assesment	written			ECTS	4,5	

Study guide Mechanical Engineering

6.2 Study and traineeship abroad

Study abroad offers a lot of attractive prospects. You become acquainted with a different (organisational) culture, a different university life and a different educational system. Besides you enlarge your personal network, you learn to live within a foreign environment, and you improve your knowledge of languages. To put it briefly: a period of study abroad will make a valuable contribution to your personal education and you will draw much benefit from it at your search for a proper job.

You can make use of one of many ex change agreements with European and non-European universities for your study at a foreign university. Within such an agreement you do not pay the foreign university any tuition fee. In addition to this, grants are available for financing the additional expenses for staying abroad. For your first information on studying abroad it is recommended to visit the Information Centre of the Student Advisory Office. The Student Advisory Office is part of the Student Service Centre (paragraph 5.1). Much documentation about study abroad is available at this Centre, like information on all universities with which an exchange agreement exists, possibilities of financing, and travel reports from students. Also information is available at the website: http://www.stad.tudelft.nl.

If you got a clear idea about where you want to go to, you can ask the Coordinator for International Exchange Mechanical Engineering for advise about your programme at the foreign university and about the recognition of your results at the host university. Your graduation professor will judge your work afterwards according to the rules you agreed upon prior to departure.

The foreign programme should at least contribute 8 c redit points to your MSc programme. To arrange everything you have to do a lot yourself. Therefore you have to take a preparation period into account of preferably a year, but at least half a year.

Tr aineeship

Usually a traineeship is arranged via one of the staff members of the section to which your specialization belongs. In addition to this you can visit the Information Centre of the Student Advisory Office (see above). They offer a lot of information, not only on a large number of companies abroad, but also on financially related affairs, working permits, visa, etc. Additional information is available at the website: http://www.stad.tudelft.nl.

Coordinator for International Exchange Mechanical Engineering dr.ir. D. Nijveldt Room 8B - 3 - 08 Mekelweg 2 2628 CD Delft Phone: 015 27 85921 Fax: 0152788340 E-mail: d.nijveldt@wbmt.tudelft.nl

6.3 Course and Examination Regulations

<u>(CER)</u> (art. 7.13 W.H.W.)

Master's degree programme Mechanical Engineering

Faculty of Mechanical Engineering and Marine Technology

Delft University of Technology

Section 1 GENERAL

Article 1 SCOPE AND APPLICABILITY OF THESE REGULATIONS

- 1. These regulations are applicable to teaching and examinations of the Master's degree programme Mechanical Engineering at Delft University of Technology, hereafter referred to as *the programme*.
- 2. These programmes a re conducted under the responsibility of the Faculty of Mechanical Engineering and Marine Technology at Delft University of Technology, hereafter referred to as *the Faculty*.
- 3. For this programme, implementation procedures are in effect that supplement, and are integral to, these Course and Ex amination Regulations.
- 4. The Course and Examination Regulations and the implementation procedures are laid down by the Dean.

Article 2 DEFINITIONS

Any terms in these regulations also occurring in the Higher Education and Acade mic Research Act (WHW) will have the same meaning as that intended by that Act.

In these regulations, the following terms shall be understood as follows:

- a. the Act: the Higher Education and Academic Research Act (abbreviated in Dutch to WHW), including its subsequent amendments;
- b. programme: the Master's degree programme referred to in Article 7.3a, subsection 1 under b of the Act;
- c. student: anyone enrolled at Delft University of Technology (as a student or "ex traneus") for purposes of education and/or for taking the ex aminations and interim ex aminations that are part of the programme;
- d. practical training: practical exercise as referred to in Article 7.13, subsection 2 under d of the Act, in one of the following forms:
 - writing a thesis;
 - writing a paper/completing an assignment, project or technological design;
 - completing a design or research assignment;
 - conducting literature study;
 - completing a work placement;
 - taking part in fieldwork or an ex cursion;
 - conducting tests and experiments;
 - or participating in another educational activity focused on the attainment of a particular skill.
- e. interim ex amination: a test of a student's knowledge, insight and skills with regard to a particular unit of study, and the assessment of this ex amination by at least one ex aminer appointed for that task by the board of ex aminers.
- h. ex amination: test used by the board of ex aminers to establish whether all interim ex aminations that are part of the *propedeuse* (i.e. first year), *kandidaats* or *doctoraal* phases have been successfully completed as specified in Article 7.10 of the Act.
- i. board of examiners: the board of examiners as appointed according to Article 7.12 of the Act.
- j. implementation procedures: the implementation procedures integral to the Course and Examination Regulations and applicable to a specific Master's programme.
- k. working day: each day from Monday to Friday, with the exclusion of official national holidays.
- I. course calendar: the publication containing all the specific information appropriate to a specific Master's course guide named in Article 1.

Study guide Mechanical Engineering

- m. ex aminer: those appointed by the board of ex aminers for the purpose of taking interim ex aminations in accordance with Article 7.12 of the Act;
- n. ECTS:credits as specified in the European Credit Transfer System
- o. The University:Delft University of Technology

Article 3 OBJECTIVE OF THE MASTER'S PROGRAMME MECHANICAL ENGINEERING

This Master's programme is intended to prep are graduates in Mechanical Engineering for the practice of engineering at an academic level,

- capable to identify, define and analyse problems, for the solution of which mechanical engineering principles and techniques can contribute
- capable to systematically design and produce a sound solution to the problem
- capable to present this solution in a convincing way.

Article 4 ADMISSION TO THE MASTER'S PROGRAMME

- 1. Admission to this programme will be granted to students in possession of a degree issued for the Bachelor's programme in Mechanical Engineering issued by the TU Delft.
- 2. Students who are not graduates of the course specified in paragraph 1 but who are in possession of a confirmation of admission provided by the Faculty will be eligible for admission.
- 3. To obtain confirmation of admission, a student must satisfy the criteria specified in paragraph 1.4 of the study guide.
- 4. If so requested by a student who is not in possession of the Bachelor's degree as specified in paragraph 1, the board of examiners may depart from paragraph 1 by allowing that student to attend parts of the Master's programme.

Article 5 EXIT QUALIFICATIONS OF THE MASTER'S PROGRAMME MECHANICAL ENGINEERING

The Master's programme Mechanical Engineering has the following exit qualifications:

Graduates will:

- have broad and deep knowledge of the basic engineering sciences
- have broad basic technical and scientific knowledge of the mechanical engineering disciplines: production, transport, process technology, energy conversion and mechatronics
- be specialized in at least one mechanical engineering discipline
- be able to innovate, to model and to design systems and equipment
- be able to contribute to solving multidisciplinary problems and to work both in multidisciplinary teams and independently in an international industrial context
- be able to communicate effectively with team members and environment
- be well aware of their responsibilities with regard to sustainability, economy, health, safety and social welfare
- be able to maintain professional competence through life-long learning

Study guide Mechanical Engineering

Article 6 FULL-TIME AND PART-TIME COURSE FOR MAT

The Master's programme will be provided on a full-time basis.

Article 7 LANGUAGE

- 1. English shall be the language used for all teaching and examinations.
- In certain cases, the Dean may depart from paragraph 1 by giving permission for teaching to take place in Dutch, if this is necessitated either by the specific nature of the organisation, the quality of the course, or the students' origins and backgrounds.
- 3. If a student asks to be allowed to take one component, or several components, of an examination in a language other than English, the terms of the regulations and the guidelines of the board of examiners will be applicable accordingly.

Section 2 COMPOSITION OF THE MASTER'S PROGRAMME AND THE FINAL EXAMINATION

Article 8

- 1. The composition of the educational programme is laid down in the implementation procedures. This educational program me starts once a year, in September.
- 2. Students can enter the programme at the beginning of each semester.
- 3. The examination for a Master's Degree is an integral part of the programme. The study load for this examination totals 84 credits (120 ECTS).

Section 3 INTERIM EXAMINATIONS

Article 9 THE NUMBER, PERIOD AND FREQUENCY OF INTERIM EXAMINATIONS

- 1. a. The course shall provide at least two opportunities per year to sit interim ex aminations:
 - the first shall follow immediately after the teaching period in which the relevant component was taught and completed;
 - the second shall be given at the end of the second semester, or otherwise in the August resit period.
 - b. The interim ex aminations referred to under a. shall be held as indicated for the unit of study concerned in the timetable for the current academic year. At the beginning of each academic year, a timetable specifying the dates and times of written interim ex aminations shall be drawn up and published.

Study guide Mechanical Engineering

- 2. In the event that a course component is not taught within the Faculty itself, and therefore there is no indication of the number of times it is possible to sit an interim examination as referred to in paragraph 1, the course and examination regulations of the relevant Faculty or degree programme will be applicable, provided no decision to the contrary has been taken by the board of examiners.
- 3. Notwithstanding the provisions of the first clause under 1a, at least one opportunity shall be given per year to take an interim ex amination in a course component that has not been taught in that year.
- 4. In certain cases the board of examiners may allow departures from the specified number of times that an interim examination can be sat.

Article 10 THE ORDER OF INTERIM EXAMINATIONS

The implementation procedures shall specify the order in which the interim examinations will be taken, or in which students be to participate in practical training.

Article 11 THE PERIOD OF VALIDITY OF INTERIM EXAMINATIONS

- 1. Students who have interrupted their studies, or who have delayed their studies for other reasons, shall resit any component they passed ten years or more ago if its contents have since been modified.
- 2. The board of examiners may, in a student's favour, depart from the provisions of paragraph 1.

Article 12 THE FORM OF THE INTERIM EXAMINATIONS, AND THE METHOD OF TESTING

- 1. The interim examinations be sat as specified in the implementation procedures. Practical skills be tested during the hours allocated for practical training.
- 2. If no specification is made of the way in which an interim ex amination can be taken, because that ex amination applies to a unit of study that is not taught within the Faculty, and because it involves a unit of study that is not specific to students taking part in a programme administered by the Faculty of Mechanical Engineering and Marine Technology, the relevant conditions in the Course and Ex amination Regulations for that unit of study shall be applicable. Each year, the board of ex aminers under which the interim ex amination falls shall determine the way in which the interim ex amination is to be taken.
- 3. The appointed examiner may depart from the provisions of paragraphs 1 and 2 in a student's favour. Each student with a physical or sensory disability shall be given the opportunity to take all interim examinations and practical training in a way that, to the greatest possible extent, is adapted to the disability in question. Under this facility, the form or length of the interim examinations shall be adapted to the individual situation, or practical aids shall be made available.
- 4. The facilities specified in the previous paragraph should be requested from the board of examiners by the student concerned. This request should be accompanied by a medical certificate issued no more than one year previously by a doctor, psychologist or student counsellor. All requests involving dyslex is should be backed by a recognised dyslex is testing body.
- 5. Per year, the form in which each interim ex amination is to be taken shall be specified in the study guide for the actual course year under the unit of study concerned.

6. Per year, the form in which each interim examination is to be taken shall be specified in the study guide for the actual course year under the unit of study concerned.

Article 13 ORAL INTERIM EXAMINATIONS

- 1. Unless otherwise determined by the board of examiners, no oral interim examination shall involve more than a single student at the same time.
- 2. All oral interim examinations be public, unless, in exceptional circumstances, the board of examiners or the individual examiner decide otherwise, or if the student has submitted an objection.

Article 14 THE ESTABLISHMENT AND NOTIFICATION OF RESULTS

- 1. Immediately after taking an oral interim examination, the examiner shall announce the result, and issue the student with the relevant written notification.
- 2. As soon as possible after a written interim examination, and always within a maximum of 15 working days, the examiner shall declbe the results. The examiner shall provide the Faculty's student administration office with the necessary details. Paying all due attention to the privacy of individual students, the student administration office shall take responsibility for the registration, publication and reporting of the results within 20 working days of the interim examination.
- 3. If an interim examination is taken neither in writing nor orally, but in another form, the board of examiners shall decide in advance on the way in which students will be notified of the results, and of the period within which this will occur.
- 4. When students be provided with written notification of the results of an interim examination, it shall at all times be made clear that they have the right to inspect the relevant examination documents (as defined in Article 15), and that they have the right to appeal to the examination appeals board.

Article 15 CANDIDATES' RIGHT TO INSPECT THEIR EXAMINATION DOCUMENTS

- 1. For at least one month after the results of a written examination have been announced, it shall be possible for students to inspect their examination and its assessment. At the student's request, he/she will be provided with a copy of the relevant work at cost price.
- During the period specified in paragraph 1, it is possible for all interested parties to inspect the questions and assignments
 of the relevant interim examination, and also the norms whereby assessment took place. Upon request a copy of this
 information shall be provided at cost price.
- 3. The board of ex aminers may specify that inspection of ex amination documents will take place at a predetermined place at no fewer than two predetermined times. The place and dates shall be stated on the list of results. If a student can demonstrate that, due to forces beyond his or her control, it was impossible to be present at the predetermined place and time, a new opport unity shall be provided; if possible, this shall fall within the period specified in paragraph 1.

Study guide Mechanical Engineering

Article 16 OPTIONS FOR DISCUSSING THE RESULTS OF AN INTERIM EXAMINATION

- 1. As soon as possible after the results of an interim examination have been announced, student or examiner may take an initiative towards discussing the examination, and to explaining its assessment.
- 2. For a period of one month, starting on the day following the announcement of the results, a student who has taken a written interim examination may apply to the relevant examiner to discuss the work in question. This discussion shall follow at a place and time specified by the examiner, and always within a reasonable period.
- 3. If, for whatever reason, the board of examiners organises a collective discussion after an interim examination, there be only two cases in which a student may submit a request of the type specified in the previous paragraph: either a. by being present at the collective discussion and by simultaneously providing the motives for the request; or b. when, due to circumstances beyond his or her control, it was impossible to attend the collective discussion.
- 4. The conditions of the previous paragraph shall also apply if the board of examiners or the examiner provides the student with an opportunity to compbe his or her a nswers with standard answers.
- 5. The board of examiners may allow deviations from the stipulations of paragraphs 3 and 4.

Section 4 EXEMPTION FROM INTERIM EXAMINATIONS

Article 17 EXEMPTION FROM INTERIM EXAMINATIONS OR PRACTICAL EXERCISE

- The board of ex aminers can grant students ex emption from one or more interim ex aminations or practical ex ercises, if they have satisfied the ex aminers either with regard to earlier interim ex aminations, or with regard to Higher Ed ucation ex aminations, or with regard to knowledge and skills acquired outside higher education. However, this is possible only if they satisfy at least one of the following conditions:
 - a: the interim examination involved a unit of study that, in terms of content and study load, was equivalent to a comparable university course in the Netherlands or beyond, or at an institute of professional education (i.e. HBO institute / hogeschool) in the Netherlands.
 - b: the student can provide proof of knowledge or experience acquired either during a course provided somewhere other than at a Dutch institute of professional education, or otherwise during activities conducted in another contex t.
- 2. If the relevant examiner has made a fully motivated proposal to this effect, the board of examiners may grant exemption from an interim examination.

Section 5 THE MASTER'S EXAMINATIONS

Article 18 PERIODS AND FREQUENCY OF EXAMINATIONS

- 1. An opportunity to take the Master's examination shall be provided no less than twice a year. In a meeting held before the start of the academic year, the board of examiners shall establish the dates on which the examinations be to be held. These shall be published in the study guide for the programme and year in question.
- 2. All students can apply to take the examinations as soon as they have fulfilled the conditions of their course, and have provided the student administration office with proof of the course components they have passed.

Article 19 REPORTING ON STUDENTS' PROGRESS

- 1. At least twice a year, each student shall be sent a written report on the progress he or she has made over the preceding period.
- 2. The report referred to in paragraph 1 shall be composed according to the guidelines established by the Executive Board.
- 3. The Dean shall be responsible for supervising the progress of all students enrolled on the course. Such supervision shall include an assessment of the options for study that be available to students, both inside the program me and beyond it.

Section 6 PROVISIONS FOR IMPLEMENTATION

Article 20 MODIFICATION OF THE REGULATIONS

- 1. These regulations may be modified in a special decision by the Dean.
- 2. No decision shall be made in respect of the current academic year, unless, by all reasonable definitions, it is unlikely to damage the interests of students.
- 3. No change in the regulations may negatively affect a previous decision made by the board of examiners in respect of a student.

Article 21 TRANSITIONAL RULING

- 1. In the event that the composition of a teaching programme is modified, or that one of the Articles of the Course and Examination Regulations is changed, the Dean shall decide on a transitional ruling, which shall then be published in the implementation procedures.
- 2. In all cases, this transitional ruling shall incorporate the following:
 - a. a ruling on the exemptions that be available on the basis of interim examinations that a student has already passed,
 - b. the number of times that it is still possible to sit for interim examinations under the conditions of the old programme,
 - c. the period for which the transitional ruling will be valid.

Study guide Mechanical Engineering

Article 22 PUBLICATION OF THE TRANSITIONAL RULING

- 1. The Dean shall take responsibility for publicising the following in an appropriate fashion: the transitional ruling defined in Article 21, and the implementation procedures and the changes to it.
- 2. The Course and Examination Regulations and the implementation procedures for each course shall be incorporated in the study guide.

Article 23 DATE OF COMMENCEMENT

These regulations shall come into force on 1 September 2002.
IMPLEMENTATION PROCEDURES

for the course and examination regulations appropriate to the Master's programme Mechanical Engineering

Article 1 COURSE CALENDAR

The course calendar for the programme can be found in the Study Guide for the Master's degree programme Mechanical Engineering.

Article 2 COMPOSITION OF THE PROGRAMME

The composition of the Master's degree programme Mechanical Engineering, including number of credit points, assessment, entrance requirements per unit of study is described in the Study Guide.

Article 3 COMPOSING FLEXIBLE STUDY PROGRAMMES

- 1. Students may themselves compose an individual study programme that will lead to an examination. This programme must consist, either in full or for the greater part, of units of study which be taught on the course they be at tending, and may be supplemented with units taught on other courses or at other universities.
- 2. Each student desiring to compose a programme of the sort referred to in paragraph 1 shall submit his or her own proposal, motivating it in full, for the approval of the relevant board of examiners, i.e. at the beginning of the Master's program me.

Article 4 PROCEDURE FOR APPROVING FLEXIBLE STUDY

PROGRAMMME

- 1. No less than two months before they intend to start on a flexible study programme, all students must submit their proposals for their choices of one or more units of study (as referred to in Article 3) for approval by the board of ex aminers. Each proposal must be accompanied by a clearly argued motivation.
- 2. Any decision not to approve the proposal shall be motivated by the board of examiners after the student in question has been given the opport unity of a hearing.
- 3. The board of examiners shall decide within twenty working days of receiving the application, or, if the application is submitted during an academic holiday, no more than ten working days after this holiday has ended.
- 4. The board of examiners can adjourn its decision for no more than ten working days. The student shall be given written notification of such adjournment within the twenty-working-day period referred to in the first sentence of paragraph 3. The student shall receive written notification of the decision without delay.

Study guide Mechanical Engineering

Article 5 THE ORDER OF INTERIM EXAMINATIONS AND ASSIGNMENTS

The order in which the interim ex aminations will be taken, assignments shall be fulfilled or in which students be to participate in practical training, is laid down by means of entrance requirements, specified in the description of the contents of the program me in the Study Guide.

Article 6 MASTER'S THESIS

The programme is concluded by fulfilling a final assignment and presenting a Master's thesis.

Article 7 VARIANTS AND ANNOTATIONS

- 1. The Mechanical Engineering MSc-programme is provided in 6 variants:
 - Transportation Engineering
 - Control Engineering and Mechatronics
 - Process and Engergy Technology
 - Production Technology and Organization
 - Solid and Fluid Mechanics
 - Biomedical Engineering
- As an addition to the variant programme there are three annotations. After completing such an annotation, the student
 acquires a supplement to the MSc-degree, which declares a more than average knwoledge about that subject. These
 annotations are:
 - Technology in Sustainable Development
 - Technical Marketing
 - Offshore Technology
- 3. Further details and requirements are laid down in the study guide.

Article 8 PARTICIPATION IN THE PROJECT "TU DELFT HELPS REDUCE THE SHORTAGE OF TEACHERS"

Within the framework of the project "TU Delft helps reduce the shortage of teachers in Dutch pre-university education", students can take part in the course "TU Delft/Teachers for schools". This course comprises two parts, a preparatory course and a supervision phase. The total course leads to the award of six credits (9 ECTS), which should be allocated within the elective subjects.

Laid down by the Dean of the Faculty Mechanical Engineering and Marine Technology d.d. 26-6-2002, after the approval of the Faculty's Student Council d.d. 26-6-2002, and after considering the recommendations provided by the education committee on 10-6-2002.

Study guide Mechanical Engineering

6.4 Regulations and guidelines for the board of examiners

(art. 7.12 W.H.W.)

Delft University of Technology Faculty of Mechanical Engineering and Marine Technolgy

Master's programme in Mechanical Engineering

Article 1 SCOPE OF THE REGULATIONS

These regulations and guidelines are applicable to the teaching of, and examinations for, the Master's degree programme in Mechanical Engineering, hereafter referred to as the programme.

Article 2 DEFINITIONS

- 1 When used in these regulations and guidelines, the term Course and Ex amination Regulations (CER), refers to the current course and ex amination regulations as intended under Article 7.12 of the Higher Education and Academic Research Act (abb reviated in Dutch as WHW):
- 2 All other terms occurring in these Regulations will have the same meaning as that intended in the CER and the WHW.

Article 3 DAY-TO-DAY ADMINISTRATION

The board of examiners consists of the lecturers who are engaged in the educational programme and mentioned as such in the curricula, described in section 1.5 of the study guide. The board of examiners shall appoint a chair and a secretary from its members. The chair shall be responsible for the day-to-day management of the committee.

Article 4 ENTRY FOR INTERIM EXAMINATIONS

- 1 Students shall apply for interim ex aminations at the Faculty's Department of Educational and Student Affairs by entering data in the ex amination application system, or, if the system is not in use, by submitting a form made available by the Department of Educational and Student Affairs. Whatever the means of application, all submissions must be received no less than ten working days before the interim ex amination.
- 2 In exceptional cases, the board of examiners can depart from the application period defined in paragraphs 1 and 4 of this Article, provided that this departure is in the favour of the student concerned.
- 3 Admission to the interim examination will be granted solely to those students who are registered on the list of applicants produced by the examination application system (or by any alternative system currently in force).
- If, in their opinion, students have not been able to a pply for an interim ex amination due to events beyond their control, they shall apply to the board of ex aminers no less than two full working days before the day for which the ex amination is planned. By submitting a declaration of demonstrable *force majeure* written or issued by, or on behalf of, the board of ex aminers, the student may be allowed to sit the relevant ex amination.

Article 5 ORDER DURING AN INTERIM EXAMINATION

1 With regard to written interim ex aminations, the board of ex aminers and/or the appointed ex aminer shall be responsible for appointing invigilators who, on behalf of and under the authority of the board of ex aminers will ensure that the ex amination runs smoothly.

Study guide Mechanical Engineering

- 2 If asked by, or on behalf of, the board of examiners, all candidates shall identify themselves by showing their campus card.
- 3 Candidates shall observe all instructions that have been published before the start of the examination by the board of examiners, or by the examiner or invigilator. They shall also follow instructions given during the examination and immediately after it has finished.
- 4 If a candidate fails to fulfil the conditions of the paragraphs 2 and 3 of this Article, the board of examiners or the appointed examiner can exclude him or her from further participation in the interim examination. The consequence of such exclusion is that no result is established for the examination in question. Before taking such a decision, the board of examiners shall offer the student concerned an opportunity to state his or her case.
- 5 The time allotted for each interim examination shall, by all reasonable standards, be long enough to allow candidates sufficient time to answer its questions.
- 6 When the interim ex amination has finished, candidates may keep the assignment papers. The ex ception to this rule concerns ex aminations in which questions and answers must be handed in together.
- 7 Candidates may not enter the examination room until the invigilator gives permission.
- 8 No candidates are admitted into the examination room later than half an hour after the official start of the examination.
- 9 Candidates are not allowed to leave the examination room within the first half hour following the official start of the examination. After this time, permission to leave the room temporarily will be given only in urgent cases. No more than any one candidate may be absent at the same time.
- 10 Under no circumstances my items such as briefcases, bags and mobile telephones be used or handled in the ex amination room.
- 11 Although candidates are responsible for bringing their own calculators and their own writing and drawing materials, the faculty will provide answer sheets and scrap paper.

12In the event that a certain examination requires students to use calculators, these calculators may at no time be able to exceed the maximum capabilities specified by the lecturer for that subject. In general, programmable calculating equipment is not allowed. (Generally examination assignments should be formulated such that they can be carried out with a simple calculator; at no times should candidates with more complex calculators have an advantage.)

- 13 Candidates may not write their answers in pencil, unless the lecturer has given prior permission for this.
- 14 During the interim examination, candidates may not consult books, readers, etc., unless the lecturer has given prior permission for this.
- 15 If an invigilator catches a candidate or candidates cheating, the procedure described in Article 6, paragraph 2 of these regulations will be applicable.
- 16 Before permanently leaving the examination room (i.e. no less than 30 minutes after the start of the interim examination), candidates must, at minimum, submit the front page of the answer sheet. This must bear their name and student number.
- 17 Before the interim ex amination begins, the invigilator shall instruct the candidates on the procedure they must follow if they leave the ex amination room without completing all the ex amination assignments.
- 18 Students who believe they may qualify for examination in a different form, should, as specified in Article 12 paragraphs 4 and 5 of the CER¹, submit a fully motivated request for this to the chair of the board of examiners.

Article 6 CHEATING

1 Cheating is defined as any act committed by a student for the purpose of making it partly or wholly impossible to make a correct assessment of his or her knowledge, insight and skills.

¹ Course and Examination Regulations

Study guide Mechanical Engineering

- 2 If a student is found to be cheating as defined in paragraph 1 of this Article, the board of examiners can decide to exclude him from the interim examination in question.
- 3 The decision to ex dude a student as defined in paragraph 2 of this Article shall be taken on the basis of the invigilator's report of the cheating.
- In urgent cases, the invigilator is entitled to act on behalf of the board of examiners by immediately excluding the student or students concerned. The board of examiners shall ensure that, immediately after the interim examination, the report defined in paragraph 3 of this Article is made in writing; and that a copy is issued to the student or students concerned.
- 5 Within 20 days of his or her exclusion, such a student may appeal to the board of examiners to reverse their decision. To this appeal, the student will attach a copy of the report defined in paragraph 4 of this Article; this may also be accompanied by the student's own written testimony.
- 6 Before deciding on an appeal of the sort defined in paragraph 5 of this Article, the board of examiners shall give both student and examiner the opportunity of a hearing.
- 7 The board of examiners will decide on any reversal of the original decision within 30 working days of receiving the student's appeal.
- 8 The consequence of exclusion is that no examination result will be recorded for the interim examination intended under paragraph 2 of this Article.
- 9 In the event of cheating, the board of examiners can decide, conditionally or unconditionally, to exclude the student from all further interim examinations for a maximum period of one year.

Article 7 CRITERIA

When taking the decisions that are integral to their duties, the board of examiners and, where appropriate, the examiner, shall be guided by the criteria stated below. When these criteria conflict, the board shall carefully weigh the interests of allowing one criterion to prevail over another. At all times, these standards must ensure that the following conditions are met:

- a that the criteria regarding quality and selection inherent to an interim ex amination are maintained;
- b that the need for efficiency is met, particularly by limiting to a minimum any time loss that would hinder those students whose preparations for examinations and interim examinations are running to schedule;
- c that students who wish to assume too great a study load should be protected from themselves;
- d that clemency should be shown in all cases in which students' progress is slowed by circumstances beyond their control.

Article 8 QUESTIONS AND ASSIGNMENTS

- 1 The scope of an interim ex amination, and the sources upon which it is based, shall be announced no less than a month before that ex amination takes place. No questions or assignments in the ex amination may go beyond the scope of these sources.
- 2 To the greatest possible extent, the questions and assignments of each interim examination shall be evenly distributed over the material being examined.
- 3 Both in content and form, each interim examination shall represent the learning objectives stated.
- 4 All questions and assignments shall be clear and explicit.
- 5 Well in advance of each interim ex amination, the board of ex aminers or the ex aminer shall announce the form of ex amination and method of testing as meant under Article 12 of the CER.

Study guide Mechanical Engineering

6 Well in advance of each written interim ex amination, the board of ex aminers or the ex aminer shall provide an opportunity whereby students intending to participate in it can ex amine a similar test on the same subject, together with sample answers and the norms that would be applied during its assessment.

Article 9 ASSESSMENT

- 1 The assessment of an interim examination is expressed in whole numbers on a scale from 1 to 10, with 6 signifying a pass. If desired, practical training can also be assessed as a " pass" or a "fail". All exemptions for a subject are treated as a 6, i.e. a pass.
- 2 Students pass their Master's examinations by satisfying the examiners in each component of the Master's programme. Students awarded a 5 in a single subject ex cepting the thesis project will also qualify for the award of their Master's degree.
- 3 Per subject, the highest mark awarded for an interim ex am will be recorded on the ex amination certificate.

Article 10 THE ESTABLISHMENT OF EXAMINATION RESULTS²

- 1 The votes of the board of examiners shall be established by a simple majority of votes.
- 2 If the votes are equally divided, the chair of the board of examiners shall have the casting vote, unless the vote takes place in writing.
- 3 If, in a written vote, the votes are equally divided, there shall be a second ballot. If this, too, leads to an equal division of votes, the proposal being balloted shall be rejected.

Article 11 CUM LAUDE

- 1 At the discretion of the board of examiners, a candidate for the Master's degree can receive the designation "cum laude" if he or she meets the following conditions:
 - a the mark awarded to the components specified in the Master's examination implementation procedures shall average no less than 8 in a list that contains no marks below 6;
 - b the candidate concerned shall have completed the Master's degree programme in no more than two and a half years;
 - c the mark awarded for the thesis project shall be no less than 8;
 - d the examiner of the graduation assignment shall have submitted a proposal for the award of "cum laude".
- 2 When establishing the elapsed study time referred to in paragraph 1 subsection b of this Article, all due account should be taken of any delays caused by circumstances qualifying the candidate for support under the "Regeling Financiële Ondersteuning Studenten" (RFOS)
- 3 At all times, the board of examiners has the authority to decide on awarding the designation " cum laude" in cases that fall outside the provisions defined above.

² For the period within which students shall be notified of the results of interim examinations, see Article 14 of the Course and Examination Regulations (CER) for the Master's degree programmes.

Article 12 MASTER'S DEGREE CERTIFICATES AND

STATEMENTS

- 1 To establish that a candidate has satisfied the examiners in the Master's examinations, the board of examiners shall issue a degree certificate. This shall be signed by the chair and the secretary to the board of examiners.
- 2 a The degree certificate as intended under paragraph 1 shall list the specific components of the examination, and, where appropriate, the competencies associated with them.
 - b The degree certificate shall be accompanied by marks lists in both Dutch and English.
- 3 If a candidate's performance during the examinations testifies to exceptional abilities, the board of examiners can, under the conditions stated in Article 11 of these Regulations, decide to grant the designation "cum laude" on the degree certificate.
- 4 Any student who has successfully completed more than one interim ex amination and to whom, upon his or her leaving the university, a degree certificate as intended in paragraph 1 of this Article cannot be awarded, shall, upon his or her request, receive a statement from the board of ex aminers in question.

Article 13 PROCEDURE FOR APPROVALS

- 1 Any student wishing to submit a request as intended under Article 7.3 paragraph 4 of the WHW (i.e. with regard to a flex ible study programme) should do so on a timely basis, ensuring that, by all reasonable definitions, there is time for approval to be given before he or she takes the first interim ex amination. In this, he or she should take full account of the period within which the board of ex aminers is entitled to decide (see Article 14, paragraph 1). The request shall be accompanied by a clearly argued motivation, and, if necessary, by material that supports it.
- 2 Students shall submit to the board of examiners any requests for exemption from an interim examination or practical exercise as intended under Article 17 of the CE R. The board of examiners shall decide on this after taking advice from the student counsellor. The periods within which decisions shall be taken are defined in Article 14, paragraph 2 of these Regulations and Guidelines.
- 3 If a student wishes to depart from the teaching programme prescribed in the implementation procedures, he or she shall submit a request to this effect, ensuring that, by all reasonable definitions, there is time for approval to be given before the date of the first interim ex amination that deviates from that programme. In this, full account should be taken of the period within which the board of ex aminers is entitled to decide (see Article 13, paragra ph 1).
- 4 A decision to withhold approval for a request of the type intended under paragraphs 1, 3 and 4 of this Article must be fully motivated by the Board of Ex aminers, and may only be made after the student has been given the opportunity of a hearing, where the student may call upon the assistance of the student counsellor.
- 5 The student will immediately be informed in writing of a decision on any of the matters intended under paragraphs 1, 2, 3 and 4 of this Article. If the board of examiners concerned has not made a decision during the time period prescribed in article 14, paragraph 1, or otherwise during the period of adjournment, approval will be understood to have been granted.

Article 14 TIME PERIODS

- A decision on a request such as those described in Article 13, paragraph 1 or 4 shall be made within 40 working days of its receipt; or, if the request was submitted either during an academic holiday or within a period of three weeks before the start of an academic holiday, it shall be made within a period of 40 working days after the end of the holiday. The board of examiners may adjourn a decision for no more than 10 working days. The student will be notified in writing of any such adjournment before the end of the 40-day period specified in the first sentence of this paragraph.
- 2 The provisions of the previous paragraph will also be applicable to requests such as those described in Article 13 paragraph 3, on the understanding that the time period will start from the moment that the recommendations of the student counsellor have been submitted. The student counsellor shall submit these recommendations to the board of ex aminers no more than 10 working days after receiving the student's request.

Article 15 RIGHT OF APPEAL

Within four weeks of the event in question, students can appeal to the examinations appeals board against the following: a ruling by the board of examiners, a ruling by an examiner, or their treatment during an examination as defined in Article 7.60 WHW.

Article 16 MODIFICATION OF THESE REGULATIONS AND GUIDELINES

No decision shall be made in respect of the current academic year, unless, by all reasonable definitions, it is unlikely to damage the interests of students.

Article 17 DATE OF COMMENCEMENT

These regulations will come into effect on 1 September 2002.

Approved by the board of examiners of the Master's programme in Mechanical Engineering on 10 April, 2002

116

6.5 Working conditions and RSI

RSI (Repetitive Strain Injury) is a well known problem by now. Within the TU Delft the number of complaints caused by RSI is increasing. Still too many employees and students neglect the first symptoms of RSI, without knowing where to go with their questions and complaints. On the intermet there is a lot of information to be found on this matter. An example is http://www.rsi.pagina.nl. Free software, can be downloaded on the WbMT website, that helps you to prevent RSI: http://www.wbmt.tudelft.nl, button: "facilities".

Causes There are two mechanisms that cause RSI:

- Dynamic loading: repetitive dynamic loading of muscles in fingers and hands, without taking breaks, can cause an overload in these muscles. Friction between muscles, tendons and bones can eventually cause damage.
- Static loading: constant stressing of muscles in the neck, shoulders and arms prevents blood circulation and squeezes off nerves. This results in cold and tingling fingers. Mental stress and unfavourable positioning of the body increases this effect.
- **Symptoms** There are various symptoms, which indicate RSI: pain, stiffnes, tingling and a loss of strength can occur in neck shoulders, arms, wrists, hands and sometimes even in legs. Without resting these symptoms will only getworse.

Prevention How to prevent RSI:

- Vary repetitive tasks, like typing and using a mouse, with non repetitive tasks, like walking to the printer or reading documents.
- Take regular breaks. It is recommended for every two hours work to take a 10-minute break and for every 10 minutes work to take a 20-second break, to improve blood circulation. It is even better to do exercises, within these breaks. For this purpose anti-RSI-software can help.
- It is strongly disrecommended to do more than six hours of computer work a day.
- Make sure that the working position of the body is correct. A good installed workplace is
 important for a correct working position. Sit straight in front of your monitor and keyboard. The
 height and distance of the monitor and desk should be sufficient. A chair with a convex back at
 waist height is favourable.
- Try not to work under stress caused by deadlines or private problems.

Don't neglect the symptoms of RSI. For questions you can contact the following people:

- Student adviser (paragraph 3.6)
- Student Health Care (SGZ), tel: 015 2 121507, student enartsen @sgz.nl
- Student Advisory Bureau (STA*D), tel: 015 27 88012
- VSSD support, tel: 015 27 82057, steunpunt@oli.tudelft.nl

Study guide Mechanical Engineering

6.6 Lecturers

Name	Phone ¹	E-Mail	Room	Building ²
Andriessen, prof. dr. J.H.T.H.	81742	J.H.T.H.Andriessen@TBM.TUDelft.nl	1.2.310	TBM
Bauer, dr. P	84654	P.Bauer@ITS.TUDelft.nl	LB 03.600	ITS-et
Beek, dr. ir. A. van	86984	A.vanBeek@WbMT.TUDelft.nl	8C-2-19	WbMT
Bekke, dr. ir. J.H. ter	84402	J.H.TerBekke@ITS.TUDelft.nl	HB 10.110	ITS-et
Bikker, prof. ir. H.	82711	H.Bikker@WbMT.TUDelft.nl	8D-3-23	WbMT
Boersma, dr. ir. B.J.	87979	B.J.Boersma@WbMT.TUDelft.nl	5B-1-33	WbMT
Booij, MSc. J.	86504	J.Booij@WbMT.TUDelft.nl	8C-2-13	WbMT
Boonstra, ir. H.	81521	H.Boonstra@WbMT.TUDelft.nl	7-1-117	WbMT
Bos, ir. W.	85935	W.Bos@WbMT.TUDelft.nl	8C-4-23	WbMT
Bosgra, prof. ir. O.H.	85610	O.H.Bosgra@WbMT.TUDelft.nl	8C-0-09	WbMT
Buijtenen, prof.ir. J.P. van	82186	J.PvanBuijtenen@WbMT.TUDelft.nl	8D-2-10	WbMT
Colonna, dr. P.	82172	P.Colonna@WbMT.TUDelft.nl	8D-2-09	WbMT
Crone, prof. ir. H.A.	85207	H.A.Crone @WbMT.TUDelft.nl	8D-4-13	WbMT
Dankelman, prof. dr. J.	85565	J.Dankelman@WbMT.TUDelft.nl	8C-1-20	WbMT
Delfos, dr. R.	82963	R.Delfos@WbMT.TUDelft.nl	5B-1-40	WbMT
Dhillon, prof.dr. J.S.	84438	J.S.Dhillon@WbMT.TUDelft.nl	1.113	API
Dietz, prof. ir. J.L.G.	87822	J.L.G.Dietz@ITS.TUDelft.nl	HB 09.060	ITS-et
Dijkstra, dr. S.	85606	S.Dijkstra@WbMT.TUDelft.nl	8C-0-01	WbMT
Dirkse, ir. C.	84057	C.Dirkse@WbMT.TUDelft.nl		WbMT
Drenth, ir. K.F.	86718	K.F.Drenth@WbMT.TUDelft.nl	8C-4-12	WbMT
Duinkerken, ir. M.B.	81790	M.B.Duinkerken@WbMT.TUDelft.nl	8C-4-13	WbMT
Eijk, prof. dr. ir. J. van	85396	J.vanEijk@WbMT.TUDelft.nl	5A-0-28	WbMT
Ernst, prof. dr. ir. L.J.	86519	L.J.Emst@WbMT.TUDelft.nl	8C-2-23	WbMT
Frouws, ir. J.W.	86606	J.W.Frouws@WbMT.TUDelft.nl	7-1-118	WbMT
Gerstel, dr.ir. A.W.	86706	A.W.Gerstel@WbMT.TUDelft.nl	8C-4-17	WbMT
Grimbergen, prof. dr. ir. C.A.	85419	C.A.Grimbergen @WbMT.TUDelft.nl	8C-1-21	WbMT
Grimmelius, ir. ing. H.T.	82746	H.T.Grimmelius@WbMT.TUDelft.nl	7-1-119	WbMT
Haaf, ir. W. ten	81588	W.tenHaaf@WbMT.TUDelft.nl	8D-3-25	WbMT
Hein, prof. dr. ing. K.R.G.	82186	K.R.G.Hein@WbMT.TUDelft.nl	8D-2-10	WbMT
Helm, prof. dr. ir. F.C.T. van der	85616	F.C.T.vanderHelm@WbMT.TUDelft.nl	8C-1-19	WbMT
Hengst, prof. ir. S.	85306	S.Hengst@WbMT.TUDelft.nl		
Herder, dr. ir. J.L.	84713	J.L.Herder@WbMT.TUDelft.nl	5A-2-06	WbMT
Hof, prof. dr. ir. P.M.J. van de n	84509	P.M.J.vandenHof@TNW.TUDelft.nl	F 218	TNW
Hommel, ir. G.	86507	G.Hommel@WbMT.TUDelft.nl	7-1-137	WbMT
Hooghiemstra, dr. G.	82589	G.Hooghiemstra@ITS.TUDelft.nl	HB 06.090	ITS-et
Hoogstrate, dr. ir. A.M.	86804	A.M.Hoogstrate@WbMT.TUDelft.nl	8D-4-08	WbMT
Huesman, ir. A.	88131	A.Huesman@WbMT.TUDelft.nl	8C-0-19	WbMT
Infante Ferreira, dr. ir C. A.	84894	C.A.InfanteFerreira@WbMT.TUDelft.nl	8D-2-19	WbMT
Kan, ir. J.J.I.M. van	83634	J.J.I.M.vanKan@ITS.TUDelft.nl	HB 04.150	ITS-et
Karpuschewski, prof. dr. ing. B.	83204	Karpu@WbMT.TUDelft.nl 8D-3-08		WbMT
Keulen, prof. dr. ir. A. van	86515	A.vanKeulen@WbMT.TUDelft.nl	8C-3-23	WbMT
Keuning, dr. ir. J.A	81897	J.A.Keuning@WbMT.TUDelft.nl	7-0-114	WbMT
Klein Woud, prof. ir. J.	81556	J.KleinWoud@WbMT.TUDelft.nl	7-1-121	WbMT

118

Name	Phone ¹	E-Mail	Room	Building ²
Kluit, dr. P.G.	87181	P.G.Kluit@TWI.TUDelft.nl	HB 08.100	ITS-et
Knoester, ing. J.	86569	J.Knoester@WbMT.TUDelft.nl	4-0-05	WbMT
Kooi, dr. ir. H.J. van de r	84459	H.J.vanderKooi@TNW.TUDelft.nl	0.225	TNW
Kramer, dr. ir. H.J.M.	85593	H.J.M.Kramer@WbMT.TUDelft.nl	1.118	WbMT
Leenders, ir. W.S.	85524	W.S.Leenders@WbMT.TUDelft.nl	7 -1-135	WbMT
Ludwig, ir. P.W.P.H.	82172	P.W.P.H.Ludwig@WbMT.TUDelft.nl		
Luttervelt, ir. C.A. van	83301	C.A.vanLuttervelt@WbMT.TUDelft.nl	8D-3-21	WbMT
Machielsen, ing. C.H.M.	84445	C.H.M.Machielsen@WbMT.TUDelft.nl	8D-2-20	WbMT
Makkee, dr. ir. M.	81391	M.Makkee@TNW.TUDelft.nl	0.467	TNW
Marissen, Prof. dr. ir. R.	83918	R.Marissen@WbMT.TUDelft.nl	8C-2-20	WbMT
Massie, W.W.	84614	W.W.Massie@offshore.tudelft.nl	3.77.1	CTG
Mast, C.A.P.G. van der	82549	C.A.P.G.vanderMast@ITS.TUDelft.nl	HB 10.120	ITS-et
Matousek, dr. ir. V.	83717	V.Matousek@WbMT.TUDelft.nl	3B-0-430	WbMT
Meersman, prof. dr. H.	84682	H.Meersman@WbMT.TUDelft.nl	7-1-122	WbMT
Mendel, prof. mr. M.M.	83556	M.M.Mendel@TBM.TUDelft.nl	3.3.030	TBM
Meijer, ir. B.R.	86876	B.R.Meijer@WbMT.TUDelft.nl	8D-4-06	WbMT
Miedema, dr. ir. S.A.	88359	S.A.Miedema@WbMT.TUDelft.nl	3B-0-410	WbMT
Moulijn, prof. dr. J.A.	85008	J.A.Moulijn@TNW.TUDelft.nl		
Mulder, K.F.	81043	K.F.Mulder@TBM.TUDelft.nl	4.1.170	TBM
Neve, ir. J.	86581	J.J.L.Neve@WbMT.TUDelft.nl	8D-4-07	WbMT
Nienhuis, dr. ir. U.	85306	U.Nienhuis@WbMT.TUDelft.nl	7-1	WbMT
Nieuwenhuizen, drs. P.R. van	88036	P.R.Nieuwenhuizen@ITS.TUDelft.nl	HB 12.290	ITS-et
Nieuwstadt, prof. dr. ir. F.T.M.	81005	F.T.M.Nieuwstadt@WbMT.TUDelft.nl	5B-1-26	WbMT
Nijhof, ir. A.H.J.	86663	A.H.J.Nijhof@WbMT.TUDelft.nl	8C-2-20	WbMT
Olujic, dr. Z.	86674	Z.Olujic@WbMT.TUDelft.nl	1.117	API
Ostayen, dr. ir. R.A.J. van	81647	R.A.J.vanOstayen@WbMT.TUDelft.nl	5A-1-20	WbMT
Ottjes, dr. ir. J.A.	84318	J.A.Ottjes@WbMT.TUDelft.nl	8C-4-14	WbMT
Overschie, ir. M.G.F.	85505	M.G.F.Overschie@TBM.TUDelft.nl	4.0.130	TBM
Paassen, dr. ir. A.H.C. van	86675	A.H.C.vanPaassen@WbMT.TUDelft.nl	8D-2-13	WbMT
Paijens, Ir. A.F.M.	86646	A.F.M.Paijens@WbMT.TUDelft.nl		
Pinkster, prof. dr. ir. J.A.	83598	J.A.Pinkster@WbMT.TUDelft.nl	7-1-127	WbMT
Pistecky, ir. P.V.	86583	P.V.Pistecky@WbMT.TUDelft.nl	5A-2-04	WbMT
Plettenburg, dr. ir. D.H.	85615	D.H.Plettenburg@WbMT.TUDelft.nl	5A-2-05	WbMT
Polinder, H.	81844	H.Polinder@ITS.TUDelft.NL		ITS-et
Post, ir. F.H.	82528	F.H.Post@ITS.TUDelft.nl	HB 12.270	ITS-et
Pourquie, dr. ir. M.J.B.M.	82997	M.J.B.M.Pourquie@WbMT.TUDelft.nl	5B-1-40	WbMT
Rijlaarsdam, mr. ir. A.	83556	A.Rijlaarsdam@TBM.TUDelft.nl	3.3.030	TBM
Rijsenbrij, prof. ir. J.C.	86573	J.C.Rijsenbrij@WbMT.TUDelft.nl	8C-4-06	WbMT
Rix en, prof. dr. ir. D.J.	81523	D.J.Rix en@WbMT.TUDelft.nl	8C-2-11	WbMT
Rongen, van F.I.J.M.	86852	F.J.I.M.vanRongen@wbmt.tudelft.nl	5A-0-29B	WbMT
Santema, prof. mr.d r. S.C.	83076	S.C.Santema@IO.TUDelft.nl	21.22	IO
Savkoor, dr. ir. A.R.	85496	A.R.Savkoor@WbMT.TUDelft.nl	8C-3-13	WbMT
Scarlett, prof. MSc B.	83577	B.Scarlett@STM.TUDelft.nl		
Scherer, prof. dr. C.W.	85899	C.W.Scherer@WbMT.TUDelft.nl	8C-0-03	WbMT

Study guide Mechanical Engineering

Name	Phone ¹	E-Mail	Room	Building ²
Schuemie, M. J.	87106	M.J.Schuemie@ITS.TUDelft.nl	HB 10.130	ITS-et
Schwab, dr. ir. A.L.	82701	A.L.Schwab@WbMT.TUDelft.nl	8C-2-21	WbMT
Sepers, ir. M.	83614	M.Sepers@ITS.TUDelft.nl	HB 12.290	ITS-et
Smit, prof. ir. K.	84978	K.Smit@LR.TUDelft.nl	1006	LR
Snelders, dr. H.M.J.J.	83108	H.J.M.M.Snelder@IO.TUDelft.nl	31.26	10
Sopers, ir. F.P.M.	85343	F.P.M.Sopers@WbMT.TUDelft.nl	8D-4-24	WbMT
Spliethoff, prof. dr. ir. H.	86734	H.Spliethoff@WbMT.TUDelft.nl	8D-2-07	WbMT
Spronck ir. J.W.	81824	J.W.Spronck@WbMT.TUDelft.nl	5A-0-29A	WbMT
Stapersma, prof. ir. D.	83051	D.Stapersma@WbMT.TUDelft.nl	7-1-122	WbMT
Steinhoff, K.	83144	K.Steinhoff@WbMT.TUDelft.nl	8D-4-21	WbMT
Teerhuis, ir. P.C.	85246	P.C.Teerhuis@WbMT.TUDelft.nl	8C-0-02	WbMT
Terwisga, prof. dr. ir. T. van	86860	T.J.C.Terwisga@WbMT.TUDelft.nl	7-1-131	WbMT
Tichem, dr. ir. M.	81603	M.Tichem@WbMT.TUDelft.nl	8D-4-11	WbMT
Toetenel, H.	82518	W.J.Toetenel@ITS.TUDelft.nl	HB 08.120	ITS-et
Veeke, ir. H.P.M.	82706	H.P.M.Veeke@WbMT.TUDelft.nl	8D-4-25	WbMT
Verheul, ir. C.H.	86720	C.H.Verheul@WbMT.TUDelft.nl	8C-4-22	WbMT
Vink, ir. J. H.	85923	J.H.Vink@WbMT.TUDelft.nl	7-1-133	WbMT
Vlasblom, prof. ir. W.J.	83973	W.J.Vlasblom@WbMT.TUDelft.nl	3B-0-450	WbMT
Van de Voorde, prof. dr. E	84682	E.vandeVoorden@WbMT.TUDelft.nl	7-1-122	WbMT
Vries, ir. E.J.H. de	86980	E.J.H.deVries@WbMT.TUDelft.nl	8C-3-18	WbMT
Weiden, dr. ir. A.J.J.	85609	A.J.J.vanderWeiden@wbmt.tudelft.nl	8C-0-04	WbMT
Werff, prof. dr. ir. K. van der	85729	K.vanderWerff@WbMT.TUDelft.nl	8D-4-17	WbMT
Westerweel, prof. dr. ir. J.	86887	J.Westerweel@WbMT.TUDelft.nl	5B-1-13	WbMT
Wieringa, prof. dr. ir. P.A.	85763	P.A.Wieringa@WbMT.TUDelft.nl	8C-1-13	WbMT
Wijting, mr. W.	84710	W.Wijting@TBM.TUDelft.nl	3.3.060	ТВМ
Wisse, ir. G.	82702	G.Wisse@WbMT.TUDelft.nl	8C-2-12	WbMT
Woerkom, dr. ir. P.Th.L.M. van	82792	P.vanWoerkom@WbMT.TUDelft.nl	8C-2-18	WbMT
Wolffenbuttel, dr. ir. R.F.	86287	R.F.Wolffenbuttel@ITS.TUDelft.nl	HB 13.030	ITS-et
Woudstra, ir. N.	82178	N.Woudstra@WbMT.TUDelft.nl	8D-2-12	WbMT

For other phone numbers the student can call the universal TU number (0 15 27 89111) or the reception of the faculty (015 27 86666)

 Phone numbers in full are 015-27.....
 API: Leeghwaterstraat 44, 2628 CA Delft CTG: Stevinweg 1, 2628 CN, Delft IO: Landberghstraat 15, 2628 CE Delft ITS-et: Mekelweg 4, 2628CD Delft LR: Kluyverweg 1, 2629 HS Delft TBM: Jaffalaan 5, 2628 BX Delft TNW: Lorentzweg 1, 2628 CJ Delft WbMT: Mekelweg 2, 2628CD Delft

